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Abstract

A phenomenological theory describes radial evolution of plasma turbulence in
the solar wind from 1 Astronomical Unit (AU) to 50 AU. The theory includes a
simple closure for local anisotropic magnetohydrodynamic turbulence, spatial
transport, and driving by large-scale shear and pickup ions. Results compare
well to plasma and magnetic field data from the Voyager 2 spacecraft, provid-
ing a basis for a concise, tractable description of turbulent energy transport

in a variety of astrophysical plasmas.
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Low frequency fluctuations in the solar wind plasma represent perhaps the most exten-
sively studied type of magnetohydrodynamic (MHD) turbulence, having been observed by
spacecraft instruments for more than thirty years [1-3]. The observed turbulence displays
properties expected of both hydrodynamic and MHD theory, including distinctive spectra
and correlations [3,4]. Solar wind turbulence is a crucial element in coupling the lower
corona plasma and the earth’s magnetosphere, and in the transport of energetic charged
particles throughout the solar-terrestrial environment. It is also a prototype for understand-
ing stellar and galactic winds, and astrophysical plasma flows in general. There has been
notable progress in understanding the cascade process [5-12] that accompanies solar wind
turbulence. So far, however, no single quantitative model has explained how turbulent en-
ergy flows from the largest interacting structures to the smallest dissipative scales where
it is deposited as heat. In this Letter we present such a theory, based upon the dynam-
ics of large-scale “eddies,” which, controlled by a single similarity scale, drives a cascade
that supplies thermal energy to the fluid plasma. The theoretical results compare well with
measurements by the Voyager 2 spacecraft at heliocentric radial distances r from 1 AU to
beyond 30 AU. This motivates development of similar phenomenological turbulence theories
for nonlinear MHD flows in a variety of astrophysical plasmas.

From the Helios and Mariner missions reaching inside 0.3 AU, to the Voyager and Pioneer
explorations beyond 50 AU, spacecraft instruments have returned magnetic field data and
plasma data (proton temperature, velocity, and density) that reveal the organized large-scale
structure of the heliospheric plasma, along with transient mesoscale features such as coronal
mass ejections, and an ubiquitous but nonuniform admixture of fluctuations. Substantial
fluctuation energy resides in an inferred range of spatial scales between the ion inertial scale
(=~ 10° cm at 1 AU) and the observed correlation scale A (= 6 x 10* cm at 1 AU). The radial
dependence of fluctuations in the low latitude solar wind, is illustrated using Voyager 2
data in Figures 1-3, which portray magnetic field variance (energy density in the turbulent
magnetic field) correlation length, and proton temperature, from 1 AU to beyond 30 AU. To

simultaneously explain these three datasets is a significant challenge. The main objective of
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this Letter is to provide such an explanation based upon turbulence theory.

Observed properties of solar wind MHD fluctuations are interpreted in two distinct ways.
On the one hand one frequently observes a distinctive velocity—magnetic field correlation,
suggestive of large amplitude noninteracting Alfvén waves [3]. Conversely, the wavenumber
(k) spectrum of fluctuations, having typically a k=53 Kolmogoroff form, indicates quasi-
steady spectral transfer and strong nonlinear couplings. This dichotomy is exacerbated by
noting that the radial variation of the fluctuation energy from 1-10 AU follows the WKB
r—3 scaling rather closely (see Fig. 1), suggesting again noninteracting waves [13]. However,
the radial evolution of the correlation scale is inconsistent with a WKB expansion (Fig. 2).
A noninteracting wave interpretation is also inconsistent with the observed proton temper-
ature profile [14-16], which is much less steep than would be implied by an adiabatic law
(Fig. 3). This again suggests deposition of turbulence energy as heat. An actively turbulent
interplanetary plasma might maintain a powerlaw inertial range, while the low frequency
end of the inertial range migrates towards still lower frequencies with increasing heliocentric
distance [17,18]. This corresponds, through the frozen-in flow condition [19], to an increas-
ing correlation scale (see Fig. 2), usually attributed [20] to dynamical communication of
turbulent eddies to steadily increasing scales.

To develop a tractable model for the radial evolution of MHD-scale solar wind turbulence,
we view the fluctuations locally as nearly incompressible [21], strongly nonlinear, homoge-
neous MHD turbulence [5,7]. Treatment of strong local turbulence on the same footing
as spatial transport is mandated [5,20,22] by the similar magnitude of the expansion time
~ r/U and the eddy-turnover time ~ A/u (U denotes the large-scale flow speed, and éu
the rms turbulent velocity). To a first approximation, transport of turbulent fluctuations
involves convection and propagation in prescribed large-scale plasma flow and magnetic
fields. MHD turbulence transport equations are derived using an assumption of scale sepa-
ration (A\/r < 1), providing generalizations of WKB theory [7,23,24]. It is straightforward
to derive equations for various correlation functions [7,8] involving the Elsésser variables

zy = v £ b/y/4mp. Here v is the turbulent plasma velocity and b/+/4mp is the fluctuating
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component, of the magnetic field, normalized to Alfvén speed units (p the mass density).
The present formalism does not require the full correlation functions and associated
spectra. The Taylor—von Karman approach [25,26] describing the evolution of hydrodynamic
turbulence from the perspective of the “energy-containing eddies” only requires an energy u?
and an associated similarity length scale A\. Here we adopt such a model, based also upon the
self-preservation hypothesis [25,26], but with adaptations appropriate to MHD [27-31]. A
distinguishing feature of the MHD case, with a locally uniform mean magnetic field By is the
appearance of anisotropy [32-36] associated with suppressed spectral transfer in the direction
parallel to By. For simplicity, we postulate that spectral transfer is of the quasi-2D or nearly
“zero frequency” type, usually described by reduced MHD [36,37,21,38]. Accordingly, for
low cross helicity (v and b uncorrelated) the decay of incompressible turbulence energy,

designated by the Elsasser variance Z? = (v* + b?/(47p)), takes on the hydrodynamic form
d—Z2 = —aZ—3 + S, (1)
where the perpendicular similarity scale A; may be associated, for example, with a correla-
tion scale transverse to the mean magnetic field. Sources of turbulent energy are represented
by S. From 1 AU to about 10 AU we expect that the principle source of replenishment for
small-scale turbulence is instability associated with stream shear [2,39] between regions of
fast ~ 700 km/s wind and slow ~ 300km/s wind.
In the outer heliosphere (r > 1 AU), low cross helicity [3,40] and low Alfvén speed V <
U lead to considerable reduction in complexity of the transport equations [10,11]. Combining
local turbulence and spatial transport effects, the energy density evolves according to
07? (U

W+U-VZ2+Z2V- 5>+MD:NZ, (2)

where N, represents the right hand side of Eq. (1). The quantity M depends upon the
geometry of the large-scale fields, and D = (v —b%/(4mp)) is the “energy difference” of fluid
and magnetic fluctuation contributions. A convenient closure is to assume that D = opZ?

for some constant op. In the solar wind, typically op =~ 1/3 [4,41].
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We identify the von Karman—Howarth similarity scale with the local correlation length
(departing in this regard from earlier efforts [5,6]), employing the standard definition [42]
I R(r',0,0)dr’ = L = X\Z? where R(r') is a correlation function. We can form an equation
for L by integration of the appropriate correlation function transport equation [10,11,24]

over all values of spatial separation. After some manipulation [10,11], this gives

oL U
5 FU-VL+ (V- Z)(1-0p)L =N, (3)

The nonlinear term Ny, associated with L is specified by adopting a local conservation law,
typically either Z\ = const., or Z?\ = L = const. The former of these corresponds, for
homogeneous turbulence, to d\/dt = 7 with = a. The latter corresponds to f = «/2
[10].

For solar wind solutions to Egs. (2)—(3), we assume U = tU, with constant U = 400 km/s.

The steady state equations for the energy and correlation (similarity) scale become,

dz? A, oaZ® Ep

F T T W T (4)
O B B
A T ®)

where we have introduced an energy supply rate Ep; due to pickup ions, which will be
discussed presently. These are supplemented by a temperature equation in which the heat

source is the energy dissipated by turbulence [2,43]. Thus the temperature is determined by

AT AT 2mya 73
ar = 3 TR TN ®)

Various constant parameters appear in Eq. (4); A = A — Cy,, where A depends upon
the rotational symmetry of the fluctuations. Energy supply by shear [11] is estimated as
FEahear o< AUZ? JAr ~ CgU/r for shear amplitude AU and shear layer width Ar, thus
determining the constant C,. Similarly ¢/ = B — A — C,, with B is an O(1) geometry
dependent constant [10]. Typically @ ~ 1 and 5 = 1/2 to 1, where these are the Taylor—

Karman constants associated with the local phenomenology [10,30].



We have found steady solutions of Eqs. (4)—(6) for which the radial dependence of the
turbulence energy Z2, similarity length scale A\, and the temperature T', compare well with
the corresponding quantities extracted from Voyager data.

Figures 1-3 illustrate this comparison of theory and observational data for two instructive
cases. In each the boundary data at 1 AU are Z% = 250km?/s?, A\ = 0.04AU, and T =
7 x 10° K, with the constants chosen as A = 0.9, B=0.7, « = =1 [10,11].

In the first case the turbulence is shear driven with C;, = C’Sh = 2, shown using solid
lines in Figs. 1-3. The shear driven model makes a reasonable prediction for the profile
of turbulent energy to 20 AU or more [11]. Focusing on Fig. 2, the upward trend of the
measured correlation scale is reasonably well accounted for by the theoretical behavior of
the similarity scale A. Finally, the theoretically predicted temperature follows the Voyager
proton temperatures to about 20 AU, but underestimates the large r (< 20 AU) observations.

The second case includes energy input due to wave excitation by pickup ions [43], a
process that becomes important in the outer heliosphere. The pickup energy input scales
as EPI ~ fpvaUng /7oy, where ng is the density of interstellar neutrals and 7y, is their
ionization time. The theoretical result including shear and pickup ion driving is depicted
in Figs. 1-3 by dashed lines. From 1 to about 20 AU there is little difference from the first
case. However for r 2 20 AU there are notable effects associated with pickup ions. The
turbulence level is slightly higher (Fig. 1), and in somewhat improved accord with the data,
while the predicted similarity scale begins to decrease, an effect not seen in the Voyager
data. (We suspect this artifact may be eliminated by generalizing the model to include two
components — quasi-2D fluctuations and parallel propagating waves — but we defer this to
future work.) On the other hand the temperature prediction from the theoretical model
with pickup ions appears to account for the Voyager proton temperatures very well (Fig. 3).

Remarkably, the simple turbulence model outlined above accounts well for the baseline
interplanetary turbulence properties observed by the Voyager 2 spacecraft from 1 AU to
several tens of AU. For the first time a theory provides a concise explanation for the average

behavior of key parameters that describe solar wind fluctuations. Evidently the heating
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of the solar wind observed beyond 20 AU cannot be explained by shear driven turbulence
alone. Driving by injection of wave energy associated with pickup ions [43] works well at a
theoretical level, thus encouraging further searches for the associated waves which have so
far remained observationally elusive. The present result also provides substantial support
for two theoretical assertions: (1) solar wind turbulence is dynamically active, and not a
passive remnant of coronal processes, and (2) an MHD nonlinear Karman—Taylor approach
to turbulent heating is defensible and at least moderately accurate, in a form that neglects
Alfvén wave propagation effects [30].

The latter point is particularly relevant as the subject of the marriage of MHD spectral
transfer and kinetic dissipation processes looms as an essential factor in understanding the
solar wind, and other important applications such as coronal heating and the galactic dy-
namo. The crucial point is that kinetic processes must eventually convert fluid motions into
heat, but the nature of MHD transfer to smaller scales may be central in selecting which
kinetic processes are influential [44]. Even though spectral transfer is controlled by the large
eddies in the Karman—Taylor picture, the present result suggests that dissipation occurs
mainly through kinetic processes operating at high perpendicular wave number.

Related theoretical models may be useful to describe transport and turbulent heating
in other space and astrophysical contexts. For example, similar models may be feasible for
both high latitude solar wind, and for inner heliospheric conditions. It is likely that these
would require reversion to a more difficult framework, including separate equations for the
two Elsédsser amplitudes Z2 in regions in which cross helicity and propagation effects are
important. An even more challenging application is the lower solar corona, where the large-
scale flow and magnetic fields are less well known but certainly governed by factors more
complex than the simple radial expansion that we were able to employ here.
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FIG. 1. Energy density of turbulence (per unit volume) estimated from one hour Voyager 2
magnetic field data (symbols), from 1 AU to about 30 AU. Theoretical solutions shown for shear

driving only (solid line) and for shear plus pickup ion driving (dashed).
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FIG. 2. Correlation scale of the normal component of magnetic field fluctuations for the same
data as in Fig. 1, computing using both the integral and e-folding definitions (see Ref.[22]) Data

is compared with theoretical model for the Karman similarity scale (curve styles as in Fig. 1)
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FIG. 3. Proton temperature data from the Voyager 2 plasma instrument, from 1 AU to about
50 AU, indicating highly non-adiabatic behavior. Also shown is temperature from the theoretical

model in which turbulent dissipation supplies internal energy (curve styles as in Fig. 1).
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