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ABSTRACT

Mechanisms for the deposition of heat in the lower coronal plasma are

discussed, emphasizing recent attempts to reconcile the uid and kinetic

perspectives. Structures at magnetohydrodynamic (MHD) scales may drive

a nonlinear cascade, preferentially exciting high perpendicular wavenumber

uctuations. Relevant dissipative kinetic processes must be identi�ed that can

absorb the associated energy ux. The relationship between the MHD cascade

and direct cyclotron absorption, including cyclotron sweep, is discussed. We

conclude that for coronal and solar wind parameters the perpendicular cascade

cannot be neglected, and may be more rapid than cyclotron sweep. Solar wind

observational evidence suggests the relevance of the ion inertial scale, which is

associated with current sheet thickness during reconnection. We conclude that

a signi�cant fraction of dissipation in the corona and solar wind likely proceeds

through a perpendicular cascade, and small-scale reconnection, coupled to

kinetic processes that act at oblique wavevectors.

Subject headings: MHD | turbulence, coronal heating, solar wind dissipation
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1. Introduction

A recurring theme in recent studies of the physics of the corona has been to identify the

mechanism by which heat is deposited within two or three solar radii of the photosphere in

su�cient quantities to both accelerate the solar wind (Holzer 1977; Habbal et al. 1995; Kohl

& et al 1995; Grall et al. 1996; Cuseri et al. 1999) and to account for high ion temperatures

inferred from recent SOHO observations (Kohl et al. 1997; Cranmer et al. 1999). Similarly,

heating in the extended solar wind is strongly suggested by the observed non-adiabatic

radial temperature pro�le (Richardson et al. 1995). Magnetic uctuations, including waves

and turbulence, are a likely source of energy to account for this heating, both in the lower

corona where substantial dissipation is implied at distances less than 2{3R� (McKenzie

et al. 1995), and in the solar wind where signi�cant heating occurs to at least 50 AU

(Richardson et al. 1995; Zank et al. 1996). Of the models proposed to explain these

observational constraints, the Axford & McKenzie (1997; see also McKenzie et al. 1995)

model is representative of those that rely upon the direct cyclotron resonant absorption

of relatively high frequency (� kHz) waves. Such models provide natural explanations for

the high perpendicular temperatures of both the protons and the minor ions. At another

extreme, models based upon MHD cascade involve direct participation of broader band,

lower frequency uctuations (Hollweg 1986; Hollweg & Johnson 1988; Matthaeus et al.

1999b). In the cascade approach nonlinear wave-wave couplings cause energy transfer

across a wide range of spatial scales, leading to e�cient small scale kinetic dissipation.

Cascade models have been employed successfully to model solar wind observations (Tu et al.

1984; Matthaeus et al. 1999b). [Other models have been proposed that involve damping

of low-frequency modes by other mechanisms, such as non-cyclotron-resonant absorption

(Cuseri et al. 1999) or mode conversion (Kaghashvili 1999)].

Cyclotron absorption and cascade may contribute concurrently to heating. However,
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to date there has been relatively little progress in understanding the detailed relationship

between the associated uid and kinetic scale processes in collisionless plasmas. The subject

of the present paper is the interplay between the spectral cascade and kinetic damping|a

complex issue that is fundamental to the heating of many astrophysical plasmas. In

the following sections we discuss physical and observational issues of relevance to direct

cyclotron absorption models, as well as alternatives that involve MHD cascade as an

essential feature.

In section 2 we discuss the relationship between cascade and small-scale dissipation,

emphasizing the role of conservative MHD spectral transfer and anisotropic MHD couplings.

We obtain estimates for the relative importance of the cascade and cyclotron sweep

mechanisms. In Section 3, we summarize recent (observational) solar wind results relevant

to anisotropy and heating by perpendicular cascade. We describe some new results on

spectral steepening [e.g., Leamon et al. (1998a); Goldstein et al. (1994)], on the basis of

which we suggest that the solar wind dissipation range may have its onset at the ion inertial

scale, and at an orientation highly oblique to the mean �eld. In Section 4 we summarize the

perspective that solar wind and coronal dissipation may involve signi�cant contributions

from quasi-two dimensional (quasi-2D) reconnection, and kinetic processes associated with

oblique current sheet formation, with a (dominant) perpendicular cascade channeling the

energy to the associated wavevectors.

2. Dissipation of MHD Fluctuations

It is useful to consider formally how the MHD uid scale energy E changes dynamically

in a Fourier representation. In this context, by energy we mean the macroscopic uid scale

energy. This includes contributions from the kinetic energy of the velocity uctuations

and from the magnetic uctuations; however, the thermal energy is not included in E.
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Dissipation converts uid energy E into thermal energy. A useful physical picture associated

with a turbulent energy cascade is that of an energy \pipeline," which transfers energy

through intermediate steps from the large, energy-containing scales to the small-scales

where direct dissipation is e�ective. Formally, we can use a wavevector decomposition of the

energy E =
R
E(k) d3k, to write an equation for the time variation of the energy density at

wavevector k, which includes the e�ects of spectral transfer T , dissipation D, and sources

S:
@E(k; t)

@t
= T (k; t) +D(k; t) + S(k; t) (1)

The quantity T (k) is the Fourier transform of the nonlinear terms in the MHD equations

that are responsible for spectral transfer. Loosely speaking, T (k) is the pipeline referred to

above. It is related to the energy transfer function in isotropic turbulence (Panchev 1971)

and represents transfer of energy from all wavevectors into excitations near wavevector k.

The dissipation function D(k) may be of the form

D(k) = (@E(k)=@t)diss = �(k)E(k) (2)

This form is standard for hydrodynamic dissipation with viscosity �, in which case

(k)! �k2. In a space physics application, however, it is more likely that (k) might be

approximated as a linear damping rate computed from linearized Vlasov theory (Leamon

et al. 1999). (For simplicity we will discuss only the total MHD uctuation energy E,

rather than the kinetic and magnetic energy separately.) Energy sources at wavevector k,

designated by S(k), supply energy at a total rate S, and may be associated with large-scale

shear, injection by wave-particle interactions, etc. Spectral transfer is conservative

(
R
T (k) d3k = 0), and thus the time rate of change of the total energy E is the sum of

sources and dissipation,

@E

@t
= S �

Z
(k)E(k) d3k (3)

where the integral extends over all wavevectors.
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Clearly, (k) does not alone determine the dissipation rate. E(k) is also needed, and

this depends upon spectral transfer through T (k) in Eq.(1). This is, in essence, the central

problem of turbulence [see, e.g., Lesieur (1990)]. Whatever the strategy might be for dealing

with T (k), one cannot evaluate the rate of dissipation of energy without knowledge of both

(k) and E(k). Thus, we need to simultaneously confront the issues of MHD spectral

transfer (governed by large-scale dynamics) and kinetic dissipation mechanisms (controlled

by microphysics).

2.1. Cascade, Sweep, and Spectral Replenishment

To illustrate the consistency of a full cascade model, assume for the moment a simpli�ed

situation wherein all the dissipation occurs at large wavenumbers k > k0. Thus, uctuations

within a wavenumber-space sphere of radius k0 obey dynamics which are, in e�ect, ideal

and dissipationless. In practice, for a low-beta plasma, and a spectrum of Alfv�en waves, k0

would probably be chosen to be some fractional multiple of 2�=�ii where �ii = c=!pi is the

ion inertial length, c the speed of light and !pi the plasma frequency. It may be convenient

to think of k0 as a wavenumber in the inertial range. For now, assume that (k) = 0 when

k < k0. Thus, integrating Eq. (1), over the large-scale (\energy-containing") eddies, we

obtain
dE(k < k0)

dt
= S0(t)� F0(k0; t): (4)

Here S0 is the net rate of energy supplied by forcing (assumed here to be at the larger scales

k < k0). The second term on the right hand side of Eq. (4) denotes the energy per unit

time transferred from wavenumbers lower than k0 to higher wavenumbers. Flux functions

of this type can be de�ned more formally (see the Appendix).
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The evolution equation for small-scale energy is

dE(k > k0)

dt
= F0(k0; t)�

Z
(k)E(k; t) d3k; (5)

obtained by integrating over k > k0, or by using Eq. (3). For strong turbulence the energy

ux is usually controlled by the self-interactions of the larger-scale eddies. So, for example,

in hydrodynamics, or zero cross helicity MHD (see, e.g., Hossain et al. 1995), the energy

transfer rate becomes nearly independent of k for a range of k (the inertial range). For

k = k0 within this range F0(k0) = � � u3=�. Here u is the r.m.s. velocity uctuation and

� is a characteristic energy-containing length scale. For steady driven turbulence the total

uctuation level adjusts so that F0 � S0. While large scale eddies control the total decay

rate, spectral transfer determines how the energy is dissipated at small scales. We now

discuss two possible approaches to studying spectral transfer and dissipation.

The �rst is the limit of weak or vanishing spectral transfer (T � 0), which implies no

spectral replenishment. An important example of this is the \cyclotron sweep mechanism,"

in which the decay rates depend on the local proton cyclotron frequency 
ci (Hollweg &

Turner 1978; Schwartz et al. 1981; Tu & Marsch 1997), and turbulence is transported

through regions in which 
ci varies. For example, in the solar wind and corona 
ci decreases

with increasing radial distance R. As a result, outward moving uctuations are transported

into regions where the damping occurs at progressively lower frequencies. The dissipation

absorbs the energy available at the local gyrofrequency, and this process \sweeps" through

the spectrum towards lower frequencies (and lower wavenumbers), leaving in its wake a

range of energy-depleted frequencies. Further discussion of this mechanism is given in the

next section.

A second and very di�erent approximation is obtained by assuming that the energy

spectrum is known (Isenberg & Hollweg 1983; Leamon et al. 1999). (Often a simple

functional form such as a power law is employed.) One might justify this by assuming
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that spectral transfer is strong enough to replenish losses due to dissipation, so that the

spectrum is maintained at a certain level. This is exact in steady-state. Observations can

be invoked to defend a particular functional form. Provided that the full three-dimensional

energy spectrum is speci�ed correctly, the transfer function is then irrelevant.

2.2. Anisotropic MHD: Wavenumber and Frequency Cascades

There are conditions that must be satis�ed to arrive at a well-posed model of

spectral transfer and dissipation. For example, as we mentioned above, steady spectral

replenishment implies a concomitant transfer function to maintain the spectrum. The only

completely reliable way to compute the transfer rates into the dissipation range is to solve

the full nonlinear problem for all dynamically important spatial scales. Unfortunately, this

is seldom feasible. Thus, it is important to construct models that conform to the known

properties of spectral transfer. This requirement seems to have not been fully appreciated

previously.

There is considerable evidence that turbulent MHD spectral transfer in the presence

of a mean magnetic �eld (B0) is anisotropic, favoring production of structures with small

transverse scales (relative to B0). Descriptions of this robust form of dynamically generated

anisotropy come from theory (Montgomery & Turner 1981; Montgomery 1982; Zank

& Matthaeus 1992a; Zank & Matthaeus 1993; Kinney & McWilliams 1998) and from

simulations (Shebalin et al. 1983; Oughton et al. 1994b; Matthaeus et al. 1998). In the

corona, two important parameters|the plasma beta (�p) and b=B0 (b the r.m.s. magnetic

uctuation)|are expected to be small. This situation favors the production of \quasi-2D"

uctuations, i.e., those with wavevectors k such that k � B0 � 0, produced by spectral

transfer that vigorously moves energy towards higher transverse wavenumbers.
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The anisotropy of the cascade can have a signi�cant impact in determining which

kinetic processes are relevant to the deposition of heat. In steady-state, the amount of

energy dissipated per unit time at high parallel wavenumbers must match the rate of supply

by the parallel cascade. However, the rate of energy supply to parallel wavenumbers can be

quite limited, and thus the amount of dissipation at high parallel wavenumbers may also be

constrained.

The physical basis for the above remarks is clearly set out in the references; here we

make the central point quantitatively. We employ a three dimensional incompressible MHD

spectral method simulation, and the same approach as used by Matthaeus et al. (1998).

The isotropic dissipation involves equal scalar dissipation coe�cients, the resistivity � and

the viscosity �. This type of simulation was used previously to investigate the dynamical

emergence of spectral anisotropy from isotropic initial states. Here we illustrate a closely

related issue, namely the relative contributions to dissipation due to parallel gradients and

to perpendicular gradients. The former quantity is Dk / ��k2k, while the latter is D? / ��k2?,

where �kk and �k? are mean wavenumbers de�ned in the parallel and perpendicular directions,

respectively. In a steady state, the two contributions sum to the total energy decay rate

� = �k+ �? = �
P
k2Ev(k)+ �

P
k2Eb(k), where Ev(k) and Eb(k) denote the energy spectra

for the velocity and magnetic �eld uctuations, respectively.

In a near steady-state, the dissipation in each part of wave-vector space must be

balanced by spectral transfer. For example, parallel dissipation �k must be balanced by

spectral transfer in the parallel direction. This can be quanti�ed in terms of the spectral

ux functions F? and Fk that measure spectral transfer in the perpendicular and parallel

directions, just as F0 in the previous section is a measure of the net spectral ux to higher

wavenumbers. The Appendix provides more formal de�nitions. In a near steady state, we

expect that Fk � �k and F? � �?. In this way, one may study the anisotropy of spectral
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transfer by examining the anisotropy of the dissipation.

The two cases shown in Figure 1 have identical parameters, with one exception|the

value of the uniform magnetic �eld strength, taken as either B0 = 0 or B0 = 8 (in units

where the initial r.m.s. uctuation is unity). It is evident that when the mean magnetic

�eld is strong, dissipation is dominated by the contribution from perpendicular wavevectors.

By contrast, when B0 = 0, dissipation due to perpendicular and parallel contributions is

almost equal (on a per component basis).

For the illustrated case, (k) = �k2 is isotropic. Thus, the disparity in dissipation

rates is due to anisotropic spectral transfer. The stronger perpendicular cascade, which is

e�ective at inertial range scales and smaller, leads to unequal dissipation, �? > �k in the

simulation. The fact that this condition is maintained implies that the parallel cascade

is weak, and that therefore F? > Fk. This e�ect has been seen in compressible and

incompressible MHD simulations, and in both decaying and driven situations (Matthaeus

et al. 1998). Thus, in the corona, where �p � 1 and b=B0 � 1, we can expect the parallel

cascade to be slow|perhaps even negligible|in comparison to the perpendicular cascade.

A revealing corollary is that the frequency cascade (de�ned presently) may be

very much slower than the wavenumber cascade. For low �p let us consider a nearly

incompressible MHD uid [see, e.g., Zank & Matthaeus (1992a, 1993)], in which case the

dominant wave mode is the Alfv�en wave, and the wave frequency is given by 2�f = kkVA

where VA is the Alfv�en speed. Consequently the cascade in wave frequency is identical

to the parallel portion of the wavenumber cascade. However, the wavenumber cascade is

dominated by the perpendicular cascade, so that the wave frequency cascade is not a good

measure of the overall cascade rate. In particular, strong spectral transfer does not imply a

concomitant strong cascade in wave frequency. In steady-state the ux of energy into high

frequency modes may be only a small fraction of the total energy ux to high wavenumbers.
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2.3. Cascade and Sweep Rates

Parallel cascade is expected to be suppressed relative to the perpendicular cascade, but

a cyclotron sweep mechanism can still account for substantial dissipation of high frequency

Alfv�en waves (Schwartz et al. 1981; Tu & Marsch 1997). It is evidently of interest to

compare the expected rates of dissipation due to cyclotron sweep and perpendicular cascade

dissipation mechanisms.

Let us denote the perpendicular cascade heating rate as �? and the cyclotron sweep

heating rate as �cyc. The former is estimated in the standard way (Matthaeus et al. 1999b)

as �? = u3=�? where u is the rms turbulent velocity and �? is the similarity scale, or

energy-containing scale of the quasi-2D uctuations, often taken to be the perpendicular

correlation length. We assume this kind of perpendicular cascade is relevant to the coronal

plasma.

The cyclotron sweep damping rate may be estimated as �cyc � (VSW+VA)P (fci)dfci=dR

where VSW is the ow speed, VA the Alfv�en speed, P (f) the frequency dependent power

spectrum of the uctuations, and fci is the local proton gyrofrequency, varying with

heliocentric radius R (Tu & Marsch 1997; Schwartz et al. 1981). De�ning �h as the

scale height for gyrofrequency variation, and u2diss to be the energy in dissipation range

uctuations (Leamon et al. 1998a) we �nd that �cyc � (VSW + VA)u2diss=�h. Regrouping

terms, (and specializing to the corona in which VA � VSW) we estimate that the ratio of

cascade heating rate to gyrofrequency sweep heating rate is

�?
�cyc

�
 

u2

u2diss

!�
u

VA

� 
�h
�?

!
: (6)

For each of these factors we will form a high estimate and a low estimate.

The �rst of these factors expresses essentially the ratio of uctuation energy at the

correlation length scale �? to that at the dissipation scale �diss. Assuming that a single
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powerlaw k
�5=3
? spectrum is valid from the energy containing scales down to the dissipative

scales, this factor is of order (�?=�diss)2=3. Let us estimate the perpendicular energy

containing scale as �? � 3�104km, the typical supergranulation scale. Below we shall argue

that �diss � �ii, the ion inertial scale where �ii = c=!pi = VA=
ci = 2:3�102km=
p
n and n is

the proton number density in cm�3. For a low coronal number density of n � 2� 107cm�3,

we have �diss � 5 � 10�2km. Thus, for a k�5=3 inertial range, our �rst factor may be

estimated as (3 � 104=5 � 10�2)2=3 � 7:1 � 103. This is our high estimate. A low estimate

may be obtained by allowing the spectrum to be very at, say 1=f as assumed by Tu &

Marsch (1997). In this case our �rst factor is � ln (3 � 104=5 � 10�2) � 13.

To estimate the second factor, we note that turbulent velocities in the solar wind reach

values of u � 200-300 km/sec (comparable to the mean ow speed) at radial distances of

order 10R� (Scott et al. 1983). At these distances the ow speed may be comparable to

the Alfv�en speed (Foukal 1990), in which case the second term in Eq.(6) is of order unity.

Closer to the sun, u decreases (Scott et al. 1983) while VA is expected to increase. As a

result, u=VA is expected to be less than unity in the corona. On the basis of UVCS/SOHO

observations of line broadening, Cranmer et al (1999) suggest total random motions of up to

200km=s at r � 2R�, most of which may be thermal. There is some evidence from SUMER

observations (Chae et al. 1998) at somewhat lower altitudes (r � 1:05R�) and from EUV

line broadening (Hassler et al. 1990) (r � 1:1R�) that turbulent motions up to several

tens of km=s may be present. In spite of these suggestions, we emphasize that currently

available observations do not provide unambiguous estimates of the the coronal value of

u=VA. At present we shall assume that u = 30km=s, which is not unreasonable in view of

the available observations. This is also consistent with the boundary conditions assumed by

Tu and Marsch (1997). To form a low estimate of the factor u=VA we adopt a \fast" Alfv�en

speed of 1000km=s, so that u=VA � 1=33. For a \high" estimate, VA = 200km=s provides

that u=VA � 1=7.
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The �nal factor shares with the �rst factor the di�cultly that the transverse correlation

scale of coronal uctuations is unknown. Based upon remote sensing of anisotropic

density uctuations (Grall et al. 1997), we might expect that �? � R�. However it is

unlikely that correlated uctuations would exist having transverse scales greater than

the supergranulation scale of 30; 000km, an estimate that entered above into the �rst of

our three factors. The third factor also depends upon the scale height for gyrofrequency

variation �h (Tu & Marsch 1997), i.e., the length scale on which the �eld strength B varies.

In the high corona, where B � r�2, �h � r=2. In the lower corona, super-radial expansion

produces smaller �h. A typical value in the inner corona may be of order 0:1R�, i.e.,

�h = 70; 000km. Consequently, using the largest reasonable �? we arrive at the low estimate

of the third factor �h=�? � 2:3. We can form a high estimate for the third factor by using

a smaller �?, say 2; 000km, the transverse scale of the \furnace" within the network region

(Axford & McKenzie 1997). Then the third factor could be as large as � 35. However then

the high estimate for the �rst factor should be reduced to about 1:1 � 103.

Putting together the three low estimates, we �nd that �?=�cyc � 13� (1=33) � 2:3 � 1.

Even in this limit the two e�ects are comparable. Turning to the high estimate we

compute either 7; 000 � (1=7) � 2:3 � 23; 000, or using the smaller transverse scale,

1; 100 � (1=7) � 35 � 5; 500. In the high estimate regime the transverse cascade heating is

many times greater than that due to the cyclotron sweep e�ect. One concludes, subject

to the assumptions made above, that the perpendicular cascade mechanism may be an

important factor in the corona, and under certain circumstances may be a dominant factor

in heating. It seems unlikely that cascade is negligible. Earlier theoretical treatments (e.g.,

Tu & Marsch (1997)) examined the cyclotron sweep mechanism for coronal parameters,

discarding the direct cascade. On the basis of the estimates above, we suggest that the

perpendicular cascade should be evaluated as an alternative mechanism that might drive

heating.
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To be fair to earlier work, we note that the possibility of a reduced MHD perpendicular

cascade had not been mentioned in the open-�eld-line coronal context. Instead, however,

the cascade model that was typically considered was one in which the total energy transfer

rate is inversely proportional to VA. This type of model, equivalent to a frequency cascade,

appears to be based upon an isotropic cascade model [see, e.g., Kraichnan (1965); Galtier

et al. (1997)] and does not anticipate strong anisotropy. A decay rate / VA
�1 is apparently

inconsistent with MHD simulations at moderate Reynolds number (Hossain et al. 1995).

Thus, the perpendicular cascade is an approach that may motivate a new look at some of

these earlier models.

3. Dissipation in the Solar Wind

In this section we focus on dissipation in the solar wind. Where appropriate, however,

we discuss some implications for coronal dissipation.

3.1. Anisotropy, Cascades, and Dissipation

A signi�cant fraction of the energy in solar wind MHD-scale uctuations may reside in

quasi-2D regions of the spectrum. In the solar wind typically b=B0 � 1, and the quasi-2D (or

reduced MHD) modes occupy a substantial fraction of the entire phase space (Montgomery

1982; Matthaeus et al. 1998; Oughton et al. 1998). The observed spectrum (Matthaeus et al.

1990) has been parameterized as a two-component model, consisting of complementary

fractions of 2D and slab modes (respectively, kk = 0 and k? = 0). Such simpli�ed models

have proven useful in transport theory (Tu & Marsch 1993; Oughton & Matthaeus 1995)

and cosmic ray scattering theory (Bieber et al. 1994), and emerge naturally in the theory

of low Mach number nearly incompressible MHD (Zank & Matthaeus 1993). A reasonable
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consensus based upon these studies would be that solar wind uctuations are consistent

with an 80% 2D and 20% slab partitioning. This is supported also by direct observational

tests using Helios data (Bieber et al. 1996).

Dynamical studies are consistent with a cascade that generates spectra of this type.

In a two-component picture, the cascade is dominated by quasi-2D nonlinear couplings

(Oughton et al. 1998; Kinney & McWilliams 1998). A cascade model of this type was

applied with some success to the outer solar wind (Zank et al. 1996; Matthaeus et al.

1999b). This model ignores the parallel cascade, assuming, in e�ect, that parallel transfer

is frozen out, as discussed above in connection with Figure 1.

Another type of consistency that one can examine is whether the degree of anisotropy

inferred from kinematic studies is consistent with expectations from dynamics. Most

dynamical studies of the development of spectral anisotropy are based upon direct numerical

simulation (Shebalin et al. 1983; Oughton et al. 1994b; Matthaeus et al. 1998). A convenient

quantitative measure of spectral anisotropy relative to the mean magnetic �eld is the

anisotropy angle �b de�ned by tan �b = �k?=�kk where �k? and �kk are average perpendicular

and parallel wavenumbers computed using the (uctuating) magnetic energy spectrum as

a weight function [see, e.g., Oughton et al. (1994b)]. For a two-component model with an

80%{20% 2D{slab energy apportionment, one can estimate the equivalent anisotropy angle

if the 2D and slab spectra are assumed to have the same functional form. One readily �nds

that the anisotropy angle is �b � 70�. Thus, an \80%-20%" two-component model may be

described as being, in some sense, equivalent to a more fully populated spectral model with

the typical excited Fourier wavevector lying at about 70� to the mean �eld direction.

One may also ask whether �b = 70� is consistent with the degree of spectral anisotropy

expected on dynamical grounds for the solar wind. Keeping in mind that simulation results

are available only at Reynolds numbers much lower than are relevant to the solar wind, [e.g.,
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Matthaeus et al. (1998); Ghosh et al. (1998b)], we may estimate crudely as follows. Figure 1

of Matthaeus et al. (1998) displays a scaling for cos �! vs. b=B, where B =
q
b2 +B2

0 is a

measure of the total magnetic �eld strength, and �! is the anisotropy angle with a weighting

function based on the vorticity. If one again assumes that the 2D and slab spectra have the

same functional form, then �! = �b, and the expected value of anisotropy for solar wind

uctuations can be deduced. One may reasonably adopt an estimate b=B0 � 1=2 for the

solar wind, or equivalently b=B � 0:44. From the cited Figure we conclude that �b � 70� is

expected in the solar wind on the basis of these (low Reynolds number) simulations.

Several lines of argument show consistency between the inferred level of anisotropy of

solar wind uctuations and a cascade dominated by quasi-2D MHD activity. Recent studies

of the dissipation range of solar wind uctuations by Leamon et al. (1998a,b 1999) provide

complementary information in this regard.

� Observational tests (Leamon et al. 1998a). indicate that the dissipation range

consists of an equivalent mixture of approximately 50% 2D and 50% slab energy.

This contrasts with observations at lower frequency (Bieber et al. 1996) which �nd

the inertial range mixture is about 80% 2D and 20% slab. This suggests that the

2D component is dissipated more e�ciently. Cyclotron sweep would preferentially

attenuate the slab component.

� Observed cross helicity and magnetic helicity in the dissipation range are consistent

with almost equal amounts of cyclotron resonant and non-cyclotron resonant

dissipation Leamon et al. (1998b). Non-cyclotron resonant processes are likely to

operate strongly at highly oblique angles.

� A model based upon linear Vlasov damping and a spectral replenishment

approximation produces good agreement with the observed spectral steepening and
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1AU solar wind heating Leamon et al. (1999). In this model kinetic dissipation

maximizes for uctuations in the 60� to 70� range relative to the mean magnetic �eld.

3.2. Quasi-2D Current Sheets and Dissipation by Reconnection

Extrapolating solar wind results to coronal conditions one might expect that

perpendicular cascade and quasi-2D uctuations will play an even more signi�cant role in

the dissipation processes [see the discussion surrounding Eq. (6)]. The question naturally

arises as to what MHD dynamical processes might be associated with the formation of

these highly oblique structures.

Previous studies have considered the interface between kinetic and MHD e�ects in

the context of linear Vlasov theory, i.e., kinetic Alfv�en waves (Leamon et al. 1999). For a

cascade picture, it seems appropriate to employ description that is nonlinear. A natural

candidate for describing the small-scale nonlinear structures produced by an MHD cascade

is magnetic reconnection.

It has been argued that many phenomena associated with magnetic reconnection are

integral features of 2D MHD turbulence (Matthaeus & Lamkin 1986), including formation

of sheets or �laments of electric current density and concentrations of uid vorticity. The

cascade process in 2D MHD probably involves a succession of scale invariant reconnection

processes, with smaller magnetic islands coalescing to form larger poloidal ux structures

(Matthaeus & Montgomery 1980). Meanwhile, energy is cascaded to small scales and

dissipated in the associated current sheet regions. The typical current sheet thickness is

associated with the dissipation scale (Matthaeus & Lamkin 1986). The expectation is that

a power-law inertial range, dominated by cascade, gives way to a steeper dissipation range

spectrum at a wavenumber corresponding to the typical current sheet thickness.
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In the solar wind or in the corona, characteristic kinetic phenomena at the dissipative

scales should exhibit distinctive signatures. Recent kinetic theory studies have shed

considerable light on the nature of kinetic activity associated with reconnection (Biskamp

et al. 1997; Shay et al. 1998). In particular, for collisionless reconnection it now appears to

be fairly well established that the thickness of the dissipation region, i.e., the current sheet

thickness, will be of the order of the ion inertial scale �ii = c=!pi = VA=
ci. Here c, !pi, 
ci

and VA are the speed of light, the proton plasma frequency, the proton cyclotron frequency,

and the Alfv�en speed, respectively. Hence for the collisionless case, one would expect that

the \breakpoint" that signi�es the upper limit of the inertial range should occur typically

at the local ion inertial scale.

This suggests observational consequences that are testable using solar wind

observations. Previously Leamon et al. (1998a), employing WIND observations, found

that simple cyclotron resonance of parallel-propagating Alfv�en waves was not an adequate

description of the observed spectral breakpoint. Here review the Leamon et al. results,

but along with the gyrofrequency (Fig. 2) and the parallel cyclotron resonance scale (Fig.

3), we now include the ion inertial scale (Fig. 4). We may ask how these three quantities

compare as predictors of the spectral breakpoint frequency.

Figure 2 shows the linear regression of the observed breakpoint �bp with the observed

mean gyrofrequency 
ci for each interval. The parameters for the least-squares �t are

given in Table 1, as are those for the best �t constrained to pass through the origin. The

error bars on the observed break frequency are calculated by propagation of the errors in

the best �t inertial and dissipation range power law �ts to the spectrum, as discussed in

Leamon et al. (1998a). For clarity of presentation, errors in the abcissae of Figures 2{4 are

neglected.

Now consider the possibility that the damping of slab uctuations due to cyclotron
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Table 1: Best �t parameters for linear least squares �ts to the data shown in Figures 2{4.

Fits are of the form �bp = a+ b(X=2�). Values for both unconstrained �ts and �ts through

the origin are shown.

X a b �2


ci 0.200 1.760 2.93

0 3.190 3.88

kresVSW 0.274 0.360 3.61

0 0.958 5.84

kiiVSW 0.152 0.451 2.66

0 0.686 3.07

resonance is responsible for the steeping observed at the breakpoint. Assume that the mean

magnetic �eld is oriented at an angle 	 (the winding angle) relative to the radial direction.

Wavenumbers higher than the resonant wavenumber will show a steepening. Based on

the cyclotron resonance condition, the bendover point in the observed reduced spectrum

is expected to occur at radial wavenumber kres = [
ci=(vth + VA)] cos	 in view of the

super-Alfv�enic ow of the solar wind (the frozen in ow condition), where vth is the proton

thermal speed. To examine the quality of the parallel resonant wavenumber as a predictor

of the observed breakpoint, we seek a linear relation between the spectral breakpoint and

kres (strictly, between �bp and kresVSW). The results are shown in Figure 3 and Table 1.

A third case to consider is that current sheets with a purely perpendicular orientation

relative to the mean �eld are the cause of the spectral steepening. This corresponds to

strictly 2D turbulence. Assuming a 90� orientation and a thickness equal to the ion inertial

scale, we estimate that the steepening wavenumber is kii = 2�
ci sin	=VA = 2��bp=Vsw.

The data and unconstrained best �t are shown in Figure 4 with the best �t parameters
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given in Table 1.

Of the unconstrained linear �ts, the best is that for the 2D ion inertial scale, although it

is only marginally better than the gyrofrequency �t. The same conclusion holds for the �ts

through the origin. In each case the parallel resonant wavenumber is a substantially worse

predictor of the breakpoint. On this basis alone one would be encouraged in considering

kinetic activity near 2D current sheets as a possible contributor to solar wind dissipation.

However the picture is clearer when the possibility of oblique wavevectors is included. We

can then compare �ii and kres scaling at various angular orientations.

Suppose there exists an axisymmetric cone of excitations whose wavevectors are at

angle � to the mean �eld and which all have the same magnitude k0. As above, let B0

form an angle 	 relative to the (radial) direction of observation. One can show that for

a �xed �, such a delta-function distribution of uctuations has an observed (reduced)

energy spectrum with peaks at the maximum projection along the radial direction [see,

for example, the Appendix of Goldstein et al. (1983)]. This corresponds to an observed

wavenumber of k0 cos (	��). To generalize the strict 2D case (third case above), suppose

that the axisymmetric conical spectrum steepens sharply at wavenumbers corresponding to

the current sheet thickness �ii. By letting k0 = 2�=�ii, the observed breakpoint frequency

then satis�es �bp � (Vsw=2�)(
ci=VA) cos(	� �). Figure 5 (solid curve) shows the results

of calculating the best �ts to the WIND interval data, for each angle of current sheet

orientation �. The minimum in �2 for the unconstrained �ts is about 1:2, at � � 65�. This

corresponds to current sheets of thickness �ii(�) at rather large angles to the mean �eld.

In a similar way, the slab resonance condition may be generalized by again assuming a

conical distribution, but now demanding that the parallel resonance condition is satis�ed.

This requires that kres � 
ci=(vth + VA) = k0 cos�. Thus k0 = 
ci=[(vth + VA)cos�]. By

applying the same reasoning employed above we conclude that the breakpoint frequency
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should satisfy 2��bp=Vsw � [
ci=(vth + VA)] cos(	 ��)= cos �. Fixing an orientation angle

�, this provides still another linear relation between breakpoint frequency and physical

parameters that can be tested using the WIND breakpoint database. The results are shown

in Figure 5 as the dashed curve, allowing a direct comparison of the oblique resonance

condition with the oriented ion inertial scale (as predictors of the breakpoint). From the

�gure we can see that the resonant wavenumber case also reaches a minimum of �2 at

about the same oblique angle. However, the curve lies above the ion inertial scale case for

all values of �. This result complements the conclusion reached by Leamon et al. 1999 that

dissipation occurs at substantially oblique (� 70�) angles.

While far from a complete theory of dissipation, these simple examples suggest that

the ion inertial scale|and in our interpretation, oblique current sheet activity|play a

signi�cant role in dissipation of solar wind turbulence at small scales.

4. Summary

We have discussed the role of an anisotropic MHD cascade that results in the kinetic

dissipation of uctuations and the production of thermal energy. For moderate to strong

mean magnetic �eld strengths, and at low plasma beta, the anisotropy of the cascade

is expected to be strong. From this, one infers that energy is supplied preferentially

to the highly oblique, or quasi-2D, wavevectors. Various indications exist in solar wind

observations and theory that this propensity is realized. For coronal conditions, the

anisotropy of spectral transfer should be stronger still.

By using direct order-of-magnitude estimates, we have compared the cyclotron sweep

mechanism, which acts to dissipate energy at large parallel wavenumbers, and dissipation via

a (predominantly) perpendicular cascade. For coronal conditions, the cascade mechanism



{ 22 {

cannot be neglected compared to the sweep mechanism, and may be many times larger.

This does not invalidate the sweep mechanism as a contributing factor in proton heating,

nor does it impact the likelihood that cyclotron sweep may supply energy steadily to minor

ions, since this requires a much smaller energy ux.

One is led then to examine the possibility that there may be intrinsically nonlinear

channels for dissipation. Here we have suggested that the formation of quasi-2D current

sheets is an integral part of the perpendicular cascade process. The current sheets are

expected to have a thickness of the order of the ion inertial scale (Shay et al. 1998).

This hypothesis was examined in a simple but direct way, employing the same WIND

observations of spectral steepening used by Leamon et al. (1998a). We found that the best

�t for the cases considered was obtained when the breakpoint is associated with structures

of the thickness of the ion inertial scale, and oriented obliquely at an angle of approximately

65� to the mean magnetic �eld. This is not a full theory for the dissipation process, but

encourages further study beyond the usual cyclotron resonance dissipation mechanism or

other processes that occur at the proton gyrofrequency.

Much remains to be addressed in future studies of the interplay between MHD processes

and smaller scale kinetic processes. However, based upon the present discussion, and the

relative success of the cascade picture in the solar wind, we are encouraged to pursue

similar models for dissipation and heating in the corona. In view of the expected very low

values for the plasma beta, it may be that the signi�cance of quasi-2D current sheets and

processes active at the ion inertial scale are even greater in the corona than in the solar wind

(Matthaeus et al. 1999a; Shay et al. 1998). This raises intriguing possibilities. One might

wonder, for example, whether beams of mean �eld-aligned suprathermal particles would

be accelerated, which would be susceptible to beam instabilities and secondary cyclotron

instabilities. Alternatively, magnetosonic modes might be generated by mode conversion
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near the reconnection regions. These modes are expected to be heavily damped for coronal

parameters (Barnes 1979). While the signatures and e�ciencies of such secondary nonlinear

processes remain to be established, one might hope that the paradigm presented here will

be of diagnostic value in discriminating between the competing dissipative processes which

are active in the corona and solar wind.

This work is supported by NASA grants NAG5-3026 and NAG5-7164, NASA

subcontract NAG5-2848, and NSF grant ATM-9713595 to the Bartol Research Institute.

Appendix

We may describe the ux F of energy into a speci�c volume of wavenumber space by

summing the transfer function T [cf. Eq. (1)] over a region in k-space, denoted by the set

V, and de�ning

F [V; t] =
Z
V
T (k; t) d3k: (7)

In this notation, the isotropic energy transfer function described in Eq. (4) is

F0(k0; t) � F [V0(k0); t] where V0(k0) � fk : jkj > k0g.

Spectral transfer to higher parallel wave number (see x2.2) may be described by

de�ning a ux Fk(k) such that F [Vk(k); t] � �k where Vk(k) = fk : jkkj > kg. Similarly

the perpendicular spectral ux F?(k) may be de�ned such that F [V?(k)] � �? where

V?(k) = fk : k? > kg.
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Fig. 1.| Contributions to the total dissipation rate from parallel and perpendicular

gradients (per component). The data is taken from 643 spectral method incompressibleMHD

simulations at equal mechanical and magnetic Reynolds numbers R = 200. Simulations

shown are identical decaying initial value problems, with unit initial uctuation energy

density, di�ering only in the value of the uniform constant mean magnetic �eld strength:

B0 = 0 (top) and B0 = 8 (bottom). Parallel and perpendicular contributions are very

nearly equal in the B0 = 0 case which remains close to isotropic. The strong mean �eld

case develops similar level of perpendicular dissipation, but parallel dissipation is reduced

because of the suppression of parallel spectral transfer. The dissipation function in these

cases is isotropic, (k) = �k2.
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Fig. 2.| Observed breakpoint frequency vs. ion gyrofrequency for 33 WIND intervals (see

Leamon et al., 1998a). In this and the following two �gures, the dashed line is the linear

least-squares best �t. See Table 1 for best-�t parameters.
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Fig. 3.| Observed breakpoint frequency vs. Doppler-shifted parallel resonant wavenumber

for the same data as in Figure 2. See also Table 1.
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Fig. 4.| Observed breakpoint frequency vs. Doppler-shifted wavenumber of perpendicular

(current sheet) structures at the ion inertial scale for the 33 WIND intervals. See also Table 1.
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Fig. 5.| Reduced �2 values, as a function of �, for the unconstrained best-�t scalings

(see Table 1) of the breakpoint frequency with (i) the ion inertial scale (solid line) and

(ii) the (cyclotron) resonant wavenumber (dashed line). In each case the wavevectors at

the dissipation scale make an angle � with the mean magnetic �eld. See text for details.

Optimal best �ts are obtained for structures that are oblique and at approximately 65� to

the mean �eld.


