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Abstract. The distribution of magnetic �eld magnitudes is derived for the

special case of a constant mean �eld and uncorrelated components having

Gaussian distributions. Of the three cases considered{ isotropic, transverse,

and axisymmetric, the latter most closely resembles a lognormal distribution,

when the parallel variance is less than the perpendicular variance. Thus, a

normally distributed, non-intermittent vector �eld can produce a magnitude

distribution that closely resembles a functional form often associated with

models of intermittency. This result is illustrated by comparison with

a magnetic �eld magnitude distribution computed from the 1 AU Omni

dataset. The parameters of the Gaussian component magnitude distribution

can be chosen to compare with the data which is also well �t as a lognormal

type. We conclude that the magnitude distribution may not be a sensitive

indicator of intermittency, and that further examination of the sensitivity of

such indicators is warranted.

1. Introduction

The magnetic �eld magnitudes in the heliosphere
has been shown to be approximately described by
a lognormal distribution [Burlaga and King, 1979;
Slavin and Smith, 1983; Burlaga and Ness, 1998], but
there exist no theoretical model we are aware of which
predicts such a distribution of the �eld strength. Of-
ten the lognormal distribution is employed in sim-
ple models for intermittency in turbulence [see, e.g.,
Monin and Yaglom, 1975]. However, there seems to
be no compelling reason to assert that the lognormal
functional form is fundamental in the interplanetary
context, nor is it clear that there is a connection be-
tween the intermittency of the vector uctuations and
the approximate lognormality of the magnitude dis-
tribution, although both these features are observed
[Feynman and Ruzmaikin, 1994]. Indeed, the magni-
tude of the �eld comprises both the local mean, which
is intrinsically related to features of the large scale
coronal expansion, and uctuations, which may be re-
lated to local phenomena, including turbulence. Thus
it is not entirely clear whether statistical properties
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of the mean �eld are controlled by in situ processes,
such as an intermittent turbulent cascade. Neverthe-
less there seems to be a presumed connection between
lognormality and intermittency of a turbulent vector
�eld or its derivatives. For these reasons we are mo-
tivated to examine in the present paper the degree to
which Gaussian uctuations, which are purely \non-
intermittent," might be distinguished from uctua-
tions that give rise to lognormal distributions of the
�eld magnitude. As a reminder, the probablility dis-
tribution function (PDF) of a lognormally distributed
process B is de�ned as:

flogn(B) =
1p

2�wB
exp

� � (ln B
Bc

)2

2w2

	
. (1)

Note that the quantity lnB is normally distributed.
De�ning the ensemble average by h: : :i, the parame-
ters Bc and w de�ning the distribution flogn are de-
termined as lnBc = hlnBi and w2 = h(lnB�lnBc)

2i.
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2. Gaussian Fluctuations With

Constant Mean

Let us denote the magnetic �eld in so-called mean
�eld coordinates (MFC), which are cartesian coordi-
nates with unit vectors e?1, e?2 and ek such that the
instantaneous ensemble mean �eld B0 = hBi always
points along positive ek direction. In this section we
assume that the absolute value, denoted by B0, of the
ensemble mean �eld is a constant for all time. The
magnetic �eld vector B in MFC may therefore be de-
composed into a constant mean plus uctuations b:

B = B0ek + b. (2)

Let us assume, as mentioned earlier, that the MFC
components of the uctuations can be approximated
by Gaussian distributions [Whang, 1977] with vari-
ances �2

?1, �
2
?2 and �2

k, respectively. In that case the
probability distribution functions for the components
of the uctuations are:

fi(bi) =
1p
2��i

exp
�� b2i

2�2
i

	
, i = ? 1;? 2; k. (3)

For simplicity we assume that these components are
uncorrelated and therefore the magnetic �eld vector's
probability distribution function is just the product
of the probability distributions of its components, i.e:

fB(B) = fB(B?1; B?2; Bk) (4)

= f?1(B?1)f?2(B?2)fk(Bk �B0).

The probability for observing simultaneously the �rst
perpendicular component of the magnetic �eld be-
tween B?1 and B?1 + dB?1, the second perpendicu-
lar component between B?2 and B?2 + dB?2 and the
�eld's parallel component between Bk and Bk + dBk
is therefore given by:

fB(B?1; B?2; Bk)dB?1dB?2dBk,

which may be written in spherical coordinates as:

fB(B cos� sin �; B sin� sin �; B cos �)B2d(cos �)d�dB,

where B � jBj is the magnitude of the magnetic �eld.
If we carry out the integration over � and � we are
left with the probability for the magnitude to lie be-
tween B and B + dB, i.e. the Gaussian component
magnitude distribution (GCMD) is therefore:

f(B;B0; �
2
?1; �

2
?2; �

2
k) =

Z 1

�1

d(cos �)

Z 2�

0

d�B2fB

(5)
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Figure 1. Typical shapes of isotropic, transverse and
axisymmetric Gaussian component magnitude distri-
butions (GCMDs), each with the same mean �eld B0

and the total variance �2
T := �2

?1 + �2
?2 + �2

k.

where

fB = (B cos� sin �, B sin� sin �, B cos �). (6)

In the followingwe examine three possible symmetries
of the uctuations.

2.1. Isotropic Fluctuations

At �rst let us consider the case of fully isotropic
uctuations, i.e. the variances �2

?1, �
2
?2 and �2

k have
the same value, which may be called �2. For con-
venience, we de�ne the total variance �2

T = �2
?1 +

�2
?2 + �2

k. The isotropic geometry greatly simpli�es

Eq. (6) and the double integral can be done easily.
The isotropic GCMD is then given by:

fiso(B;B0; �
2) =

r
2

�

B

B0�
exp

��B2 + B2
0

2�2

	
sinh

�BB0

�2

	
.

(7)

For the sake of reference, we compute a lognormal
distribution to have the same �rst and second mo-
ments, hBi and hB2i, as the axisymmetric geometry
example described below. The resulting lognormal
function is shown in Figure 1 and represented as a
dot-dashed curve.

The dotted curve in Figure 1 shows the functional
form of Eq. 7. For all three Gaussian component pre-
dictions shown in Figure 1, we express the functions
in terms of �T , the square root of the total variance.
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Both B and B0 are expressed in units of �T and f(B)
is in units of 1=�T . The lognormal function is com-
puted as above and expressed in terms of these same
units. We use B0 = 0:76�T for all examples shown in
Figure 1. We observe that the resulting PDF for the
isotropic geometry is not a particularly good match
for the lognormal distribution represented by the dot-
dash curve. The match is not too bad for B > 1:5�T ,
but the peak region is relatively low and broad and the
low-B interval exceeds the lognormal form. Overall,
the functional form does not resemble the lognormal.
We will see below that a high degree of anisotropy
favors comparison with the lognormal form.

2.2. Transverse Fluctuations

The next case is that of purely transverse turbu-
lence that is axisymmetric, i.e., isotropic in the plane
perpendicular to the mean magnetic �eld. This means
that there are no uctuations parallel to the mean
�eld, i.e. �2

k = 0, and the variances of the uctuations

perpendicular to B0 are equal, i.e. �
2
? := �2

?1 = �2
?2.

Although this is a slight exaggeration due to the �2
k =

0 assumption, it approximates the familiar example
of Belcher and Davis [1971] who observed that uc-
tuations within and behind high-speed streams were
largely transverse to the mean magnetic �eld. A num-
ber of other studies have con�rmed this anisotropy,
for example, at 1AU using ISEE-3 data [Matthaeus

et al.,1986], and over varying heliocentric distances
in the Voyager datasets [Klein et al., 1991]. In each
case there was observed a distinct tendency for the
variance anisotropy to be relatively greater in shorter
intervals (several hours or less) with a greater ten-
dency for isotropy seen in datasets of a day or more
duration. Ulysses observations [Phillips et al., 1995;
Horbury et al., 1995] have con�rmed this aspect of
the high latitude IMF as a general attribute of high-
speed winds, except for uctuations at even lower fre-
quencies which are transverse to the radial direction
[Smith et al., 1995]. Leamon et al. [1998] demon-
strated that uctuations within magnetic clouds are
even more nearly transverse to the local mean �eld
than in typical high-speed streams at 1 AU. Purely
transverse variances are also a property of simple but
familiar \slab models" of parallel propagating Alfv�en
waves, often invoked as a traditional leading order
description of solar wind uctuations [Jokipii, 1966].

In the present model, for purely transverse uctu-
ations, �2

k = 0, and the distribution function of the

parallel component bk degenerates to a �-function:

fk(bk) = �(bk) = �(Bk � B0) = �(B cos � � B0). (8)

Using �(B cos � � B0) = B�1�(cos � � B0=B) we can
write the transverse Gaussian component magnitude
distribution (transverse GCMD) as:

ftrans(B;B0; �
2
?) =

(
0 for B < B0

B
�2?

exp
�B2

0
�B2

2�2?

	
for B > B0

.

(9)
Note that ftrans(B;B0; �

2
?) = 0 when B < B0 be-

cause any perpendicular uctuations necessarily in-
crease the magnitude of the �eld beyond B0. Only
uctuations in the parallel component can reduce the
magnitude, but these are absent in the present case.

The dashed curve in Figure 1 shows the functional
form of Eq. 9 for the same mean B0 and total variance
used to compute the dotted curve for the isotropic
geometry. For B < B0, the agreement is poor as
expected due to the extreme approximation that �2

k =
0, but the function quickly assumes a form that is in
good agreement with the lognormal once the peak of
the lognormal is achieved. In part, this demonstrates
the need for anisotropy in obtaining a PDF for the
components that produces a good �t to the lognormal
form for the magnitude distribution cited by Burlaga
and Ness [1998].

2.3. Axisymmetric Fluctuations

The last and, as we see later, the most important
case is that of axisymmetry, where, as above, the per-
pendicular variances �2

?1 and �
2
?2 have the same value

�2
?, but there is a non-zero parallel variance �

2
k. Equa-

tions. (3){(6) yield for the axisymmetric GCMD, after
integration over � the following expression:

faxis(B;B0; �
2
?; �

2
k) = (10)R 1

�1 d(cos �)
B2p

2��2?�k
exp

� � �(B;B0; �
2
?; �

2
k)
	

,

where

�(B;B0; �
2
?; �

2
k) = (11)

B2

2�2?
+ B2

0

2(�2?��2k)
+

B2(�2?��2k)
2�2?�

2

k

�
cos � � B0�

2

?

B(�2?��2k)
�2

.

After changing the integration variable tovuutB2j�2
? � �2

kj
2�2
?�

2
k

�
cos � � B0�

2
?

B(�2
? � �2

k)
�
, (12)
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we arrive at the result:

faxis(B;B0; �?; �k) =
�
C1Bf

erf for �? > �k
C1Bf

erfi for �? < �k
,

(13)
where

ferf = exp
�� B2

2�2
?

	�
erffC2B + C3g+ erffC2B �C3g

�
ferfi = exp

�� B2

2�2
?

	�
er�fC2B + C3g+ er�fC2B � C3g

	
and

C1 =
1

2�?
q
j�2
? � �2

kj
exp

� B2
0

2(�2
? � �2

k)
	
,

C2 =

s��� 1

2�2
?
� 1

2�2
k

���,
C3 =

B0�?

2�k
q
j�2
? � �2

kj
. (14)

Here erf(x) = 2��1=2
R x
0 exp f�x2gdx is the error

function and er�(x) = 2��1=2
R x
0 exp fx2gdx is the

imaginary error function.

The solid curve in Figure 1 shows the functional
form of Eq. 13 for the same mean B0 and total vari-
ance used in the previous two examples. In addition,
we take �2

? = 10��2
k in order to introduce a degree of

anisotropy consistent with Belcher and Davis [1971]
and Horbury et al. [1995]. This function now o�ers a
good approximation to the lognormal throughout the
entire range of B.

3. Data Analysis

We now apply the above theoretical development
to the observed PDF for B. We analyze NSSDC Om-
nitape data [King and Papitashvili, 1994] consisting
of 1 hour magnetic �eld averages over a 30 year span
from 1966 through 1995. Four-day subintervals are
chosen and those with more than 25% bad or missing
points are dropped from the analysis. Subintervals
that exhibit strong variations are also dropped since
they are likely to represent non-quiescent intervals of
the solar wind plasma, such as shocks and current
sheet observations. The criterion used to detect such
intervals with strong variation is �2

T=B
2
0 > 2:0, where

�2
T is the sum of the variances of the three magnetic

�eld components, and B0 is the mean �eld magni-
tude of that interval. The analysis is carried out in
the mean �eld coordinate system [Belcher and Davis,
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Figure 2. Best �t axisymmetric GCMDs (solid curve
- B0, �2

? and �2
k are free parameters, dotted curve -

�xed anisotropy of 5:5:1) and best �t lognormal dis-
tribution (dash-dotted curve). The observed distri-
bution of the �eld magnitude is shown by the dots.

�2 Best-Fit Parameters
faxis(B) 0:0041 �2

? = 12:20, �2
k = 0:82, B0 = 2:96

f5:1(B) 0:0128 �2
? = 5 � �2

k, �
2
k = 1:98, B0 = 3:10

flogn(B) 0:0035 w2 = 0:1334, Bc = 5:25

Table 1. Parameterizations for Figure 2

1971], where one axis is along the mean �eld, while
the other two axes are perpendicular to it. Figure 2
shows the resulting PDF of B when computed in the
way.

We perform a best-�t analysis of the distribution
using two di�erent probability distribution functions
described in the previous section: Lognormal, and
Axisymmetric GCMD. In these best-�t analysis of the
Lognormal distribution, both parameters, w and Bc

(see Eq. (1)) are allowed to vary. For the Axisym-
metric GCMD, B0, �?, and �k are allowed to vary.
As a third example, we �t an Axisymmetric GCMD
that assumes a 5 : 1 ratio of �2

? : �2
k, but allow the

total variance �2
T and B0 to vary. These three �ts

are denoted by flogn(B), faxis(B), and f5:1(B) re-
spectively in table 1. These functions are also shown
in Figure 2. All three represent good approximations
to both the data and the lognormal form, although
the 5 : 1 Axisymmetric GCMD function shows some
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notable departure at both high- and low-B.

The goodness-of-�t for these three cases is mea-
sured by �2, which is de�ned as

�2 =
�i (f1(Bi) � f2(Bi))

2 �Bi

�if21 (Bi)�Bi
;

where f1(Bi) is the observed PDF, f2(Bi) is one of the
theoretical functions mentioned above, and �Bi is the
bin-width of the observed data at Bi. In table 1 we
list the �2 values and the corresponding best-�t pa-
rameters for the three cases. Note that the �2 values
are virtually identical for the axisymmetric GCMD
and the lognormal distribution.

4. Discussion

We have shown that a vector �eld with a �xed
mean and normally distributed (Gaussian) compo-
nents gives rise to a distribution of vector magni-
tudes that under suitable conditions is quite similar
in form to a lognormal distribution. In particular,
the correspondence is good when the Gaussian com-
ponent magnitude distribution is axisymmetric about
the mean �eld but admits a high degree of variance
anisotropy, with parallel variance less than perpen-
dicular variance. Lognormal distributions are en-
countered in a wide variety of circumstances in space
physics [Burlaga and Ness, 1998; Feynman and Ruz-

maikin, 1994; Angelopoulos et al., 1999] and are of-
ten taken as indicators of scale invariant or statisti-
cally intermittent processes. The present calculation
shows that this correspondence must be interpreted
with some care, since a very similar distribution can
be recovered in an entirely di�erent way for the mag-
nitude of a vector �eld. A Gaussian distribution for
the components need not imply scale invariance (al-
though there is no contradiction if it does) and in
any case it is, by de�nition, non-intermittent. In de-
riving this result, we assumed independence of the
component distributions, an exact result in planes of
symmetry, but one that requires further scrutiny for
the general case.

We illustrated this idea in the context of solar wind
uctuations observed at 1 AU. Although the theory
described here o�ers a good �t to the observed dis-
tribution of B, it raises some questions in connec-
tion with existing knowledge of solar wind uctua-
tions. For instance, the best-�t version of the the-
ory requires an unusually high degree of uctuation
anisotropy which may not be supported by the data.
In addition, the theory assumes a constant B0 value

when the above analysis of the data produces a dis-
tribution of B0 values (not shown) that itself crudely
resembles a lognormal distribution. This raises the
further question as to whether the statistical proper-
ties of the magnitude of the total magnetic �eld are
controlled by variability of the mean �eld (as might
be de�ned, for example, by a suitable time average)
or variability of the uctuations. The implications
may di�er considerably, as the former is likely con-
trolled by coronal conditions, whereas the latter may
be inuenced greatly by active in situ processes, in-
cluding turbulence which may generate intermittency
and non-gaussian statistical e�ects.

There is a considerable body of evidence that solar
wind uctuations display statistical properties that
are non-Gaussian and intermittent [Burlaga and Ness,
1998; Feynman and Ruzmaikin, 1994; Tu et al., 1996;
Horbury et al., 1996]. Less well understood is the ori-
gin of these properties, whether they might be of local
or coronal origin, or whether they are of a dynamical
or kinematic character. There also remain questions
as to whether distinctive non-gaussian distributions
are associated principally with small scale dissipative
intermittency, or with large scale ows or time de-
pendent features of the solar wind. The prospect for
clear answers to these questions is complicated fur-
ther by relatively unexplored issues pertaining to the
sensitivity of statistical distributions and high order
moments to averaging techniques, data selection cri-
teria and �nite sample e�ects [see e.g., Matthaeus et

al., 1986; Feynman and Ruzmaikin, 1994]. We intend
to explore these issues in greater detail in the future,
concluding at present only that the appearance of ap-
proximately lognormal distributions of vector magni-
tudes may not be a sensitive indicator of underlying
non-gaussian statistics.
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