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Abstract. The dissipation range for interplanetary magnetic �eld 
uctua-
tions is formed by those 
uctuations with spatial scales comparable to the
gyroradius or ion inertial length of a thermal ion. It is reasonable to assume
that the dissipation range represents the �nal fate of magnetic energy that is
transferred from the largest spatial scales via nonlinear processes until kinetic
coupling with the background plasma removes the energy from the spectrum
and heats the background distribution. Typically, the dissipation range at
1 AU sets in at spacecraft frame frequencies of a few tenths of a hertz. It
is characterized by a steepening of the power spectrum and often demon-
strates a bias of the polarization or magnetic helicity spectrum. We examine
Wind observations of inertial and dissipation range spectra in an attempt
to better understand the processes that form the dissipation range and how
these processes depend on the ambient solar wind parameters (interplanetary
magnetic �eld intensity, ambient proton density and temperature, etc.). We
focus on stationary intervals with well-de�ned inertial and dissipation range
spectra. Our analysis shows that parallel-propagating waves, such as Alfv�en
waves, are inconsistent with the data. MHD turbulence consisting of a partly
slab and partly two-dimensional (2-D) composite geometry is consistent with
the observations, while thermal particle interactions with the 2-D component
may be responsible for the formation of the dissipation range. Kinetic Alfv�en
waves propagating at large angles to the background magnetic �eld are also
consistent with the observations and may form some portion of the 2-D
turbulence component.

1. Introduction

Two paradigms are currently in vogue for describ-
ing the basic nature of low-frequency (from < 10�4

to � 1 Hz in the spacecraft frame), interplanetary
magnetic �eld (IMF) 
uctuations. In the �rst para-
digm, IMF 
uctuations are thought to consist mostly
of waves derivable from the magnetohydrodynamic
(MHD) equations (see Coleman [1966] and review by
Barnes [1979]). The traditional argument holds that

these waves originate at the Sun near the Alfv�en crit-
ical point, propagate outward, and are largely unaf-
fected along the propagation path except for WKB
transport e�ects [see Hollweg , 1990]. The near-Sun
source is supported in part by observations near 1
AU of correlations between the magnetic and 
uid ve-
locity 
uctuations that suggest a predominantly out-
ward propagation of the wave [Belcher and Davis,
1971]. Propagation of the waves parallel to the am-
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bient mean magnetic �eld is commonly assumed on
the basis of the observation of minimum variance di-
rections that tend to be aligned with the mean �eld
near 1 AU [Belcher and Davis, 1971; Daily, 1973].

Apart from the high IMF-
uid velocity correlations
(high cross helicity) several other observations and
theoretical considerations support and re�ne the wave
paradigm. The damping of slow mode waves generally
and of the fast mode wave due to nonlinear steepen-
ing and Landau damping at nonzero angles of prop-
agation relative to the mean magnetic �eld suggest
that the parallel-propagating Alfv�en mode should be
dominant in the solar wind. Such waves, with limited
nonlinear interactions, may be a remnant signature of
solar atmospheric 
uctuations if the wave paradigm
is correct.

In the second paradigm, the turbulence paradigm,
it is argued that the IMF 
uctuations are fundamen-
tally nonlinear and interactive so that self-organization
of 
uctuations over a broad range of frequencies is
accomplished [Coleman, 1968; Matthaeus and Gold-

stein, 1982]. In this model, 
uctuation energy that
originates at or near the sun may propagate or con-
vect outward, but added energy due to large-scale,
in situ processes and dissipation may be important
[Goldstein et al., 1995; Tu and Marsch, 1995]. The
magnetic energy is transferred through the spectrum
to spatial scales that might otherwise be depleted
so that a self-deterministic spectrum is achieved. In
this paradigm the IMF 
uctuations in the range from
< 10�4 to � 1 Hz form the \inertial range" of the
spectrum, and heating is implied [Coleman, 1968].

There is now ample evidence that both the inner
heliosphere [Freeman, 1988; Marsch, 1991] and the
outer heliosphere [Richardson et al., 1995] are subject
to a measurable degree of in situ heating. While shock
compression may provide a measure of that heating
[Zank et al., 1996] the dissipation of IMF 
uctuations
has been argued to provide a means for the majority
of the heating of the solar wind in the inner helio-
sphere [Coleman, 1968].

If dissipation of magnetic energy is needed to ac-
count for the apparent heating of the solar wind
plasma, then the above two paradigms imply poten-
tially very di�erent heating rates. If the IMF 
uc-
tuations are noninteracting waves, then the wave en-
ergy at a given frequency (asssumed to be signi�cantly
lower than the cyclotron frequency) is unavailable for
heating the background ions until the kinetic pro-
cesses responsible for coupling the 
uctuations to the
background ions are shifted to that given frequency
through changes in the background parameters [cf.
Schwartz et al., 1981, Figure 1]. For instance, the

cyclotron frequency, where resonant dissipation be-
comes signi�cant for Alfv�en waves, scales with the
mean magnetic �eld, 
ci � B, so the cyclotron fre-
quency varies with heliocentric distance as 
ci � R�1

in the outer heliosphere. Within the inner helio-
sphere, 
ci � R�2. This suggests a relatively slow
process whereby the IMF 
uctuation spectrum is con-
sumed from the high-frequency end only as the kinetic
processes of wave damping shift to lower frequency.
This greatly limits the amount of energy available for
in situ heating of the background ions and has been
shown by Schwartz et al. [1981] to be inadequate to
explain the apparent heating of thermal ions in high-
speed streams. Consideration of minor ion species
permits cyclotron damping at lower frequencies, but
only at reduced rates, because of the reduced number
density.

Other dampingmechanisms, such as Landau damp-
ing [Barnes, 1966, 1979; Stix, 1992], operate over a
wide range of wave frequencies. As such, it is unclear
whether or how they would lead to a sharp spectral
feature of the type we discuss here. We adopt the im-
plication, taken from traditional 
uid dynamics, that
a spectral break at the high-frequency end of the in-
ertial range leading to a steepened power spectrum is
indicative of the onset of dissipation. Other interpre-
tations are not ruled out by this analysis.

If the IMF 
uctuations are fundamentally turbu-
lent with a self-organizing spectrum and active spec-
tral cascade of energy from large spatial scales to
small scales, then the so-called \energy-containing

uctuations" at the largest spatial scales [Batche-
lor, 1953] provide a source of energy which is trans-
ferred through the inertial range to replenish the de-
pleted high-frequency spectrum and thereby enhance
the heating of the background ions. Indeed, such an
energy-containing spectral transfer is the very de�ni-
tion of an inertial range [Kolmogoro�, 1941]. The
high-frequency region of the spectrum where mag-
netic energy is coupled to the thermal motions of the
ions is known in traditional 
uid turbulence theory
as the dissipation range [Batchelor, 1953], and it is
characterized by a steepening of the power spectrum
relative to the inertial range such as is seen in the solar
wind at frequencies comparable to the proton gyro-
radius [Behannon, 1975; Denskat et al., 1983; Smith
et al., 1990; Goldstein et al., 1994]. In this way, IMF
turbulence may provide an enhanced heating rate rel-
ative to the wave paradigm so long as (1) an active
spectral transfer of magnetic energy is maintained to
replenish the damped oscillations and (2) a mecha-
nism is available for coupling the magnetic 
uctua-
tions of the dissipation range to the background ions.
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Whatever the dynamic nature of the 
uctuations
may be and however the magnetic spectrum may
evolve in the solar wind, we can test some aspects
of the models for the dissipation dynamics as well as
the geometry of the magnetic spectrum using in situ
measurements. By geometry we mean the relative
distribution of energy over the full three-dimensional
(3-D) space of wave vectors. By dissipation dynamics
we consider here whether simple models of cyclotron
damping by parallel-propagating Alfv�en waves can
provide su�cient organization of the observations to
warrant re�ned treatments.

To this end, we examine IMF 
uctuations within
the dissipation range using Wind data collected at 1
AU. In section 2 we describe our method for charac-
terizing the dissipation range 
uctuations and present
the basic parameterization of the intervals used in this
study. In section 3 we apply these observations to the
parallel-propagating wave model for IMF 
uctuations
and conclude that such waves are unable to account
for the observed characteristics of the data set. In
section 4 we analyze the geometry of the dissipation
range and �nd that a large fraction of the total power
resides in wave vectors that are quasi-perpendicular to
the mean magnetic �eld. In section 5 we discuss how
obliquely propagating waves might form the dissipa-
tion range, and in section 6 summarize our �ndings.

Throughout the paper we use the language of
parallel-propagating and obliquely propagating plasma
waves together with that of MHD turbulence theory.
No distinction regarding the dynamics of spectral evo-
lution is intended unless explicitly stated. In section 5
we embrace both concepts and allow for the possi-
bility that kinetic Alfv�en waves may form a signi�-
cant component of the turbulence. We conclude that
parallel-propagating Alfv�en waves form only a minor-
ity component of the total spectrum.

2. The Wind Data Set

This study uses 33 one-hour intervals of magnetic
�eld data from the Wind Magnetic Field Investiga-
tion (MFI) instrument [Lepping et al., 1995] and ther-
mal particle measurements from the SWE instrument
[Ogilvie et al., 1995] recorded in the solar wind when
in near-Earth orbit between January 1995 and Febru-
ary 1997. Wind was typically between 100 RE and
200RE upstream during the intervals in question. For
all intervals in this study we use the highest available
resolution magnetic �eld data; depending on the dis-
tance from Wind to Earth, the sampling rate was ei-
ther 46, 92, or 184 ms. The resolution of the plasma
data was 92 s.

No attempt was made to limit this study to \: : : the
purest examples of : : : outwardly propagating Alfv�en
waves occur[ring] in high-velocity solar wind streams
and on their trailing edges: : :" as did Belcher and

Davis [1971, p. 3534] or to exclude disturbance regions
such as coronal mass ejections or shocked plasma. We
do attempt to eliminate periods of non-stationary be-
havior that might lead to improperly computed spec-
tra, and intervals with power spectra that demon-
strate signi�cant upstream wave activity (due to ap-
parent magnetic connection to the Earth's bow shock)
are also rejected. Some spectra computed were re-
jected because no break in the spectrum was visible
below the Nyquist frequency. Only periods that result
in power law inertial range spectra are kept; power
law dissipation range spectra were virtually always
seen when a distinct spectral break was observed, and
it was generally a poorly determined inertial range
spectrum that led to the rejection of some candidate
intervals in this study. This study makes no claim of
applicability outside this limitation.

The 33 intervals used here span a wide range of
basic plasma parameters:

333 � VSW � 692 km s�1

3:1 � hBi � 28:5 nT

9:1� � �BVSW � 87:1�

0:034 � �p � 2:75

18:5 � vA � 110:2 km s�1

2:3 � np � 49:5 cm�3

2:24� 104 � Tp � 4:09� 105 K,

which are solar wind speed, magnetic �eld strength,
�eld-to-
ow angle, proton plasma �, Alfv�en speed,
proton density, and proton temperature, respectively.

The cross correlation between magnetic �eld and
solar wind velocity 
uctuations,

�BV �


�vA � �V=(j�vAjj�Vj)

�
(1)

where �vA � �B=
p
�0npmp, was computed using

92 s data. The cross correlation �BV di�ers from
the cross helicity but is similarly constrained to be
�1 � �BV � +1. It provides an indication of the rel-
ative percentage of sunward and antisunward propa-
gating Alfv�en waves in the inertial range. Seven of the
33 periods studied showed a dominance of sunward
propagating waves with three of these seven having
j�BV j � 0:25.

Figure 1 shows the trace of the power spectral den-
sity matrix for hour 1300 on day 30 of 1995, which is
typical in most regards of the events used here. The
high-frequency end of the inertial range spectrum is
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Figure 1. Typical interplanetary power spectrum
showing the inertial and dissipation ranges. (a) Trace
of the spectral matrix with a break at �0.4 Hz where
the dissipation range sets in. (b) The corresponding
magnetic helicity spectrum. The date and time of the
data used are given.

shown at spacecraft frame frequencies �sc < 0:44 Hz.
The inertial range terminates in a spectral break to a
steeper spectral index. This spectral break marks the
onset of the dissipation range at �sc > 0:44 Hz. We
return to Figure 1 below in sections 2.1 and 2.2.

2.1. Method

We used the following algorithm to analyze each
data interval:

1. Eliminate \
yers" and bad points. Any mea-
surement that is more than 3:5� from the mean in
any component is removed. Typically, 1% of the data
set (�400 points out of 40,000) are removed in this
way. The gaps so created are linearly interpolated.

2. Prewhiten the data with a �rst-order di�erence
�lter to reduce the in
uence of leakage when comput-
ing the spectra.

3. Compute the power spectra using the correla-
tion matrix method of Blackman and Tukey [1958].
A maximum lag of 10% of the length of the data set
results in 20 degrees of freedom for the spectral esti-
mates. The resulting spectra are then postdarkened

to correct for the earlier prewhitening [Chen, 1989;
Bieber et al., 1993].

4. Fit power laws to inertial and dissipation range
spectra using a least squares �t. We omit frequencies
close to the apparent spectral breakpoint when �tting
the two spectral ranges. Figure 1 is typical in most re-
spects of the spectra considered here, except in that it
does not show sharp peaks at harmonics of the space-
craft spin tone. However, these are an almost om-
nipresent feature in spectra with slightly lower power
levels. Consequently, these frequencies (harmonics of
0.33 Hz) are omitted from the least-squares �tting of
the two ranges using a �10% window around each
harmonic. A 
attening of the high-frequency spec-
trum is evident in Figure 1 at frequencies > 1 Hz and
is more evident in other intervals with lower power
levels and higher Nyquist frequencies. The 
attened
spectrum is not associated with the IMF, and the
source of this noise is under investigation by the MFI
team. We omit the 
attened spectra from the spec-
tral �tting. From the intersection of the two power
law �ts we can calculate the breakpoint frequency for
the onset of dissipation.

On average, the uncertainty in the spectral break-
point frequency produced by this method is 21% of
the computed spectral breakpoint frequency.

2.2. Preliminary Results

Figure 1 shows the computed spectral �ts de-
rived from the above analysis for the hour in ques-
tion. The computed spectral breakpoint frequency is
�bf = 0:44 Hz and the �tted inertial and dissipation
range spectra are ��(1:703�0:005) and ��(4:228�0:011),
respectively. The �tted inertial range spectra for the
33 events range from ��(1:46�0:01) to ��(1:93�0:02).
The average �t of inertial range spectra is ��1:66, in
excellent agreement with the ��5=3 prediction of Kol-
mogoro� [1941]. The dissipation range spectra range
from ��(2:00�0:02) to ��(4:43�0:01), with the average
being ��3:04. No clear correlation between the �tted
indices of the two ranges is observed.

Figure 1b shows the reduced magnetic helicity
spectrum for that interval. Magnetic helicity is con-
strained to be �1 � �M (�) � +1 and is a mea-
sure of the spatial handedness of the magnetic �eld
[Mo�att, 1978]. It can be related to the polariza-
tion in the plasma frame if the propagation direction
is known [Smith et al., 1983]. There is a negative
signature at dissipation range frequencies, averaging
�0:275 over those frequencies used to calculate the
dissipation range spectral slope. The majority of in-
tervals have helicity signatures: 13 out of 33 have
j�M j > 0:2; 21 out of 33 have j�M j > 0:15; and 27 out
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Figure 2. (a) Dependence of inertial range spectral
index and (b) dissipation range spectral index on solar
wind proton temperature. There are error bars on
this plot; on only four of the points do the error bars
exceed the size of the bullet.

of 33 have j�M j > 0:1. Goldstein et al. [1994] noted
similar behavior wherein many, but not all, intervals
studied by them showed signi�cant magnetic helicity
signatures in the dissipation range. We will return to
this result in section 3.

The Belcher and Davis [1971, p. 3534] examination
of inertial range frequencies argues that \the spectra
with slower fallo�s tend to be associated with higher
temperature regions," and we observe this same de-
pendence at a statistical level (see Figure 2a). How-
ever, it is perhaps more correct to state that the range
of inertial range indices narrows with increasing pro-
ton temperature and concentrates on the lowest val-
ues in the observed range. The dissipation range
indices computed in this analysis behave in the op-
posite sense: high-temperature proton distributions
tend to show the steepest spectra (see Figure 2b).
This suggests that steeper dissipation range spectra
imply greater heating rates.

The cyclotron frequency computed from the aver-
age magnitude of the �eld for the interval shown in
Figure 1 is �pc = 0:099 Hz. It is always the case for
the 33 periods examined that �pc < �bf as shown in
Figure 3, but it is also the case that �pc > 0:1�bf . We
will return to this in section 3.

2.3. Transverse Fluctuations

Belcher and Davis [1971] demonstrate that the in-

Figure 3. Behavior of the observed break frequency
�bf versus proton cyclotron frequency �pc. As cy-
clotron frequency scales with B, the behavior of break
frequency with IMF strength is also shown. The
dashed curve corresponds to equality �bf = �pc.

ertial range 
uctuations 1:6 � 10�4 < �sc < 0:04
Hz are largely transverse to the mean magnetic �eld.
They de�ne a coordinate system relative to the mean
magnetic �eld direction B̂ and radial direction R̂ ac-
cording to (B̂ � R̂; B̂ � (B̂ � R̂); B̂) and conclude
that the average variances for these three components
have the ratio 5:4:1. Klein et al. [1991] and Chen et

al. [1991] have subsequently shown variations in this
result. We note that this implies a ratio for the to-
tal variance transverse to and aligned with the mean
�eld of 9:1. We extend this analysis for inertial range
frequencies 0:01 <

� �sc <
� 0:3 Hz and dissipation range

frequencies 0:5 <
� �sc <

� 1:5 Hz (with large variation
due to the location of the computed spectral break-
point).

We de�ne Pk to be the power in 
uctuations par-

allel to B̂ and P? to be the total power in both com-
ponents perpendicular to the mean �eld. Therefore
P? + Pk is the total power (trace of the spectral ma-
trix) which is plotted in Figure 1. We acknowledge the
di�erence between our method using spectral power
and that of Belcher and Davis [1971], who use average
variances.

For the high-frequency end of the inertial range
our results �nd a mean P?:Pk ratio of 14:1, with a
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Figure 4. Ratio P?=Pk for the inertial (superscript
\(i)") and dissipation (superscript \(d)") ranges. The
dashed curve again represents equality.

range 3:0 � P?=Pk � 53:2. Taking into account that
the above arithmetic mean may be unduly biased by
several samples with unusually large values, we note
that the geometric mean of P?=Pk is only 10.4, which
is in closer agreement with the result of Belcher and
Davis [1971]. For the dissipation range we �nd a mean
ratio of 5.4:1 with a range of 2:36 � P?=Pk � 12:8
and a geometric mean ratio of 4.9:1. A comparison
of the ratios of transverse to parallel power for the
two spectral ranges is shown in Figure 4. The dissi-
pation range ratios P?=Pk are consistently less than
inertial range ratios, implying a decreased importance
of transverse 
uctuations in the dissipation range and
a relative increase in the compression of the plasma
at these scales.

3. Parallel-Propagating Waves

In section 2 we noted that most, but not all, dissi-
pation range spectra have moderate bias of the mag-
netic helicity. Again using our exemplary period, we
note that hBRi = �4:9 nT and sign(hBRi)h�M i > 0,
which implies either a predominance of outward prop-
agating, right-hand polarized waves or inward propa-
gating, left-hand polarized waves [Smith et al., 1983].
If we repeat this same analysis for all 33 periods
in this study, we �nd that only six intervals have
sign(hBRi)h�M i < 0, in contrast to the above exam-
ple. We are unable to infer the propagation direction
for dissipation range 
uctuations bacause of the time
resolution of the plasma data. If we compare the mag-
netic helicity in the dissipation range with the cross
correlation �BV in the inertial range and assume that
the dissipation range cross correlation is the same as

Figure 5. Dispersion relations based on numerical
solutions of the linearized Vlasov-Maxwell equations.
The real part of the frequency, !r, is given by the
solid curve and left-hand scale. The imaginary part,
or decay rate, 
, is given by the dashed curve and
right-hand scale. The top two curves for !r and 

give the solution for � = 0:1 and the bottom two
curves give the solution for � = 1:0.

for the inertial range, then we �nd that only three of
the 33 intervals studied have magnetic helicity signa-
tures that are inconsistent with ion cyclotron damp-
ing of Alfv�en waves [Stix, 1992]. Such periods could
be consistent with ion cyclotron damping if �p � 1,
which would alter the range of polarizations that pro-
vide resonance with thermal ions, but in the three
cases here, �p = 0:034, 0:191, and 0:885. We �nd no
unique features to otherwise segregate these three in-
tervals as atypical of the set. The magnetic helicity
and cross-correlation analyses suggest that the dissi-
pation range is generally consistent with the depletion
of Alfv�en waves.

Several damping mechanisms can readily be con-
sidered for the formation of the dissipation range
(see Barnes [1979] for a discussion of several, in-
cluding Landau damping). The apparent depletion
of outward propagating Alfv�en waves at frequencies
comparable to the proton cyclotron frequency (Fig-
ure 1b) naturally suggests resonant cyclotron damp-
ing of Alfv�en waves as a leading candidate, as �rst
suggested by Coleman [1968]. We pursue this sug-
gestion with a series of tests which use the cyclotron
damping mechanism in an attempt to predict the on-
set of the dissipation range.
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3.1. Cyclotron-Resonant Wave Damping

For frequencies !r � 
p, where !r is the plasma-
frame wave frequency and 
p is the proton cyclotron
frequency, the dispersion relation for left-hand po-
larized Alfv�en-ion cyclotron waves, hereafter Alfv�en
waves, propagating parallel to the magnetic �eld is
[Stix, 1992]

!r = kkvA; (2)

where kk = k � B̂ is the wavenumber component par-
allel to the ambient magnetic �eld and vA, the Alfv�en
velocity, is given by

vA = c

p

!pi
=

Bp
�0npmp

: (3)

For higher frequencies, dissipation becomes important
and the solution becomes dispersive. Figure 5 shows
two solutions to the linearized Vlasov-Maxwell equa-
tions for two values of � = v2th=v

2
A that extend into the

range where dissipation becomes signi�cant. We as-
sume single-temperature Maxwellian distributions for
both protons and electrons with Tp = Te. The solu-
tions for !r approach 
p asymptotically as dissipation
increases. Dissipation sets in at lower wavenumbers
for hotter distributions (increased �) so that the on-
set of dissipation becomes dependent upon the proton
temperature.

The resonance condition for cyclotron damping in
the plasma frame is

!r � k � v = �
p; (4)

where v is the particle velocity. For outward propa-
gating waves and inward moving ions we can reduce
the resonance condition to a prediction for the mini-
mum resonant wavenumber:

!r + kkvp = +
p; (5)

where vp is the proton speed.

The (Maxwellian) spread of particle speeds, vth,
results in a spread of wavenumbers that can resonate
with the protons. We have two methods to calculate
at which frequency dissipation should set in:

3.1.1. Simple slab calculation We assume
that vp = vth and that damping sets in at !r =
kvA � 
p. Substituting this into the resonance con-
dition (equation (5)) gives

kd =

p

vA + vth
(6)

as an estimate for the minimum, outward propagating
wavenumber at which dissipation by resonance with

the background ion distribution becomes important.
In principle, if the dissipation range is made up of
outward propagating Alfv�en waves, then this estimate
for kd should determine the onset of the dissipation
range. We can use Figure 5 as a rough check of the
validity of the estimate of (6): when �p = 1, vA =
vth, and kvA=
p = 1

2 . From Figure 5 we can see
that this corresponds to 
=
p ' �0:05, so dissipation
has started; however, combining kvA=
p = 1

2 with

(2), we get !r=
p = 1
2 , which is an overestimate.

Following the second set of traces for �p = 0:1 predicts
!r=
p = kvA=
p = 0:9, which again gives reasonable
dissipation rates of 
=
p ' �0:05 but overestimates
!r.

Once we know the wavenumber at which dissipa-
tion starts, we may use the Doppler shift to compute
the frequency of an (outward propagating) Alfv�en
wave resonant with a particle with the mean thermal
speed:

�sc =
k �VSW

2�
+

!r
2�

: (7)

It is possible to �nd a lower-frequency wave at which
the same dissipation rate is present, but this would
be an inward propagating solution. If present, the
dissipation of this wave would be obscured by outward
propagating waves at the same spacecraft frequency
with less dissipation, so presumably they would retain
greater energy. Either way, the conclusions are nearly
equivalent.

3.1.2. Numerical solution calculation Al-
ternately, we can apply the numerical solutions of the
type shown in Figure 5 and assume that the dissipa-
tion range begins when j
j is some fraction of !r; say,
one third or one tenth. That is, we are considering
departures from the dispersion relation of (2). We
then take the the critical wavenumber kd and wave
frequency !r from the numerical solutions. We can
again use (7) to translate to a spacecraft-frame fre-
quency.

Since we are making the parallel-propagation as-
sumption, that is, �BVSW = �kVSW , the vector dot
product in (7) implies a dependence on �BVSW for
the dissipation onset frequency for both the numeri-
cal solution and slab calculation.

3.2. Results

Figure 6 shows two events that are almost iden-
tical in ambient parameters but with very di�erent
�eld-to-
ow angles �BVSW : 23� and 87�. Using the
observed average plasma parameters (hBi = 6:4 nT,
�p = 0:71, VSW = 692 km s�1, and �BVSW = 23�),
the prediction for the spectral breakpoint of the �rst
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Figure 6. Two examples. The top curve is the same
spectrum shown in Figure 1; the bottom curve is from
November 7, 1995. The two intervals have similar
hBi, �, and VSW but very di�erent values of �BVSW ;
the second example has an almost perpendicular mag-
netic �eld. The second interval is also from a time pe-
riod when Wind was in its high-rate data mode: the
sampling rate and thus Nyquist frequency are twice
that of the earlier example. Spacecraft spin tone har-
monics are evident in the bottom trace.

event (the top curve in Figure 6) using the simple slab
calculation is 0.59 Hz. This is in relatively good agree-
ment with the measured breakpoint value of 0.44 Hz.
The average plasma parameters for the second event
(the bottom curve in Figure 6) are hBi = 4:6 nT,
�p = 0:67, VSW = 524 km s�1, and �BVSW = 87�.
From the k �VSW term in (7) we expect the Doppler
shift of the second event should be smaller by a
factor of vA=VSW , and the observed spectral break-
point should be �1 decade lower in frequency in the
spacecraft reference frame. The predicted spacecraft-
frame frequency for the spectral breakpoint in this in-
stance using the simple slab model is 0.08 Hz, which
stands in contrast with the observed value of 0.29 Hz.
The nearly identical frequencies marking the onset
of the dissipation range for these two events contra-
dict the expectations and the predictions of parallel-
propagating, cyclotron-damped Alfv�en wave theory.

These two events are not exceptions to the rule.
Figure 7 compares the predicted spectral break fre-
quencies derived from the three cyclotron resonance
models above, �th, with the observed spectral break-
point frequencies. Although all three models give
order-of-magnitude agreement with the observations,
none exhibits any close correlation with the observa-
tions. The models are unsatisfactory. This might only

Figure 7. Comparison of observed spectral break-
point frequency with predictions derived from (top)
the simple slab model (triangles) and the numerical
results for (middle) j
j = !r=10 (squares) and (bot-
tom) j
j = !r=3 (circles). Dashed curves represent
equality. Although the predictions are generally in
order-of-magnitude agreement with the observations,
the necessary linear scaling is not observed.

re
ect the simplicity of these three models were it not
for an underlying order in the results not evident in
Figure 7.

The systematic error of the theories is revealed in
Figure 8, where we plot the fractional error of the
theory relative to the observation, (�bf � �theory) =�bf ,
for (1) the simple model (triangles); (2) the numer-
ical solutions for j
j = !r=10 (squares); and (3) the
numerical solutions for j
j = !r=3 (circles). All three
theories exhibit a broad scatter of error where the the-
ories tend to overestimate the observations for values
of �BVSW < 50�. The fractional error increases sys-
tematically for �BVSW > 50�. To demonstrate that
the observations are best �t by a theory of non-�eld-
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Figure 8. Fractional error for all three models dis-
cussed in the text as a function of �eld-to-
ow angle.
The symbols are the same as in Figure 7. The error
is greatest at large angles, true for all wave formula-
tions.

aligned wave vectors, the solid curve is derived from
the Doppler shift condition under (1) the de�nition
that kr � 2��bf=VSW is the breakpoint wavenum-
ber measured along the (radial) solar wind direction
and the assumptions that (2) the true wavenumber is
aligned with the magnetic �eld, kk = kr= cos (�BVSW )
and (3) !r= (krVSW ) = 0:1. This demonstrates that
the imposition of a �BVSW dependence upon the ob-
servations leads to a systematic error in the results.

It is evident from the data and this analysis that
any explanation of magnetic dissipation in the solar
wind based on a slab-like, 1-D geometry is likely to
lead to a contradiction with observations. We ac-
knowledge that our treatment here, while employing
a fully numerical solution of the dispersion relation,
can be improved by considering numerous aspects of
the plasma, including, for instance, multitemperature
Maxwellian distributions. Even so, we contend that
any wave mode thought to be associated with the
damping process and that propagates at less than the
solar wind speed will su�er from a systematic intro-
duction of error if the wave vector is required to be
�eld aligned. This can only be avoided if (1) a sys-
tematic correlation between �BVSW and some criti-
cal plasma parameter exists that fundamentally al-
ters the resonant process for large �BVSW or (2) the
geometry of the magnetic 
uctuations is greater than
one dimensional. In the remainder of this paper we
pursue this latter possibility.

4. Quasi-2-D (Oblique) Wave Vectors

In section 2.3 we considered the spectrum of 
uctu-
ations in a �eld-aligned coordinate system and found
that the ratio of power in the two perpendicular di-
rections to the parallel direction decreased in the dis-
sipation range with respect to the inertial range (Fig-
ure 4). Following Bieber et al. [1996], in a test based
on the analysis of Oughton [1993], we can use the ra-
tio of the power in the two perpendicular directions
as another test of the geometry of the 
uctuations.

Let us de�ne a right-handed orthogonal coordi-
nate system in which the z axis is aligned with the
mean magnetic �eld and points away from the Sun,
the x axis is in the plane de�ned by the mean �eld
and the solar wind velocity vector (assumed to be ra-
dial) and also points away from the Sun, and the y
axis completes the right-handed system. This is the
(x̂; ŷ; ẑ) system used by Bieber et al. [1996]; Belcher
and Davis [1971] used the equivalent right-handed
triad (ŷ;�x̂; ẑ). Thus Pzz(�) is the power spectrum
of 
uctuations parallel to B0 � hBi. Bieber et al.
call Pxx(�) the \quasi-parallel spectrum" P(k)(�) be-
cause the 
uctuation component under consideration
(x) has a component parallel to the sampling direc-
tion; similarly, they denote Pyy(�) as the \perpen-
dicular" spectrum P(?)(�) because the y component
is perpendicular to the (radial) sampling direction.
The Bieber et al. terminology is based upon standard
turbulence nomenclature [e.g., Batchelor, 1953]. The
total spectrum for 
uctuations perpendicular to the
mean magnetic �eld as discussed in section 2.3 is

P?(�) = P(k)(�) + P(?)(�)

= Pxx(�) + Pyy(�):

4.1. Slab and 2-D Fluctuations

In order to conduct our ratio test of turbulence
geometry, we �rst assume a two-component model,
which is a composite of slab and 2-D geometries. Al-
though the results of sections 2{3 allow for the pos-
sibility of oblique wave vectors at other than 0� and
90� relative to B0, we will adopt this limitation for
the purpose of demonstration. The existence of a
signi�cant 2-D component was �rst put forward by
Matthaeus et al. [1990] and has subsequently been
supported by Zank and Matthaeus [1992a] and Bieber
et al. [1994, 1996]. See also the review by Matthaeus

et al. [1995].

Again following the notation of Bieber et al. [1996],
CS and C2 are the amplitudes of the slab and 2-D
components, respectively; that is, the slab spectrum
in the range of interest is parameterized by CS�

�q.
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The \slab fraction" r is the contribution of the slab
component to the energy spectrum, relative to the
total energy:

r � CS

CS + C2
=

1

1 + r0
; (8)

where r0 = C2=CS. We assume that both Pxx and
Pyy obey the same power law (that is, they have the
same spectral index �q). This is not strictly obeyed,
at least not within our data set, but is approximately
true with the notable exception mentioned in section
2. Equations (16) and (17) of Bieber et al. [1996]
and the above de�nitions and assumptions leads us to
the following formula for the ratio of power between
components:

Pyy(�)

Pxx(�)
=

P(?)(�)

P(k)(�)

=
CSk

1�q
S + C2

�
2q
1+q

�
k1�q2

CSk
1�q
S + C2

�
2

1+q

�
k1�q2

=
k1�qS + r0

�
2q
1+q

�
k1�q2

k1�qS + r0
�

2
1+q

�
k1�q2

(9)

where

kS � 2��

VSW cos �

k2 � 2��

VSW sin �
:

The ratio Pyy=Pxx (which under our assumptions be-
comes independent of frequency in the relevant range)
and the parameters VSW , � = �BVSW , and q are
derivable from observations by a single spacecraft.
Thus the only unknown in (9) is r0, which, in turn,
gives us the slab fraction r.

For both slab and 2-D models, there is no power
in the parallel 
uctuations and Pzz(�) = 0. Further-
more, for pure slab turbulence (r = 1; r0 = 0), ax-
isymmetry leads to equality of Pxx and Pyy [Bieber
et al., 1996]. A pure 2-D geometry predicts that the
ratio Pyy(�)=Pxx(�) be equal to the power law index
q. Equation (9) also gives the dependence on �eld-
to-
ow angle �: as � ! 0�, Pyy=Pxx ! 1, and as
� ! 90�, Pyy=Pxx! q.

Although there may be a frequency dependence as
the spectrum delves more deeply into the dissipation
range, we make the simplifying assumption that there
is no frequency dependence for r or r0 within the
relevant range. For each interval we obtain one ra-
tio Pyy=Pxx by averaging the ratio Pyy(�)=Pxx(�) for

Figure 9. Ratio of perpendicular to parallel compo-
nent spectra as a function of �eld-to-
ow angle. (top)
For the inertial range the best-�t curve is for r = 0:11
(11% slab component); (bottom) for the dissipation
range, r = 0:46. Dashed curves show the best �t us-
ing individual observed power law indices, while the
solid curves show the prediction of the best �t ratio
using constant indices.

each frequency �, excluding those frequencies within
a �10% guard band of any harmonic of the space-
craft spin tone. An error bar was determined from
the variance of the data.

We computed a Pyy=Pxx ratio for the same fre-
quency ranges used to compute the spectral slopes
of the high-frequency extent of the inertial range and
the dissipation range, as discussed in section 2. These
frequency ranges were not the same for each interval
(they depend on the break frequency of the spectrum)
but typically were �0.01 to �0.3 Hz for the inertial
range and <

�1 to <
�2 Hz for the dissipation range.

4.2. Results

The results of Pyy=Pxx as a function of �eld-to-
ow
angle are shown in Figure 9. The curves shown are
minimum �2 values of r, taking the spectral slopes to
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be constant (1.66 for the inertial range and 3.04 for
the dissipation range, which are the average spectral
slopes for our data). However, the �2 statistic of the
data set was computed using the observed value of q
for each data point.

For the high-frequency inertial range described
above, the minimum �2 of 10:87 occurs at r =
0:11+0:20�0:11. The indicated error bounds were deter-
mined from the values of r for which �2(r) = �2min+1
[Bevington, 1969]. Note that the error bounds include
r = 0, or a pure 2-D geometry; in fact, �2(r = 0) =
11:28, which is still an acceptable �t. Despite the
large error bars on the data points, we have 32 degrees
of freedom, which implies that r = 0:11 is a good �t to
the data. Taking the other limit, �2(r = 1) = 23:67,
which is almost low enough to be acceptable.

For the dissipation range the minimum �2 of 7:31
occurs at r = 0:46+0:13�0:11. This is a good �t, whereas
�2(r = 0) = 106:0 and �2(r = 1) = 30:72 are not.
The best �t value of r = 0:46 indicates that the slab
fraction is increased in the dissipation range relative
to the inertial range. There is a higher percentage of
energy that resides in wave vectors aligned with the
magnetic �eld in the dissipation range than in the
inertial range.

5. Dynamical Description Possibilities

As discussed in section 3, the observed data can-
not solely be explained by parallel-propagatingwaves.
From an entirely di�erent perspective the examina-
tion of the data in section 4 suggests that a sub-
stantial fraction of the magnetic 
uctuation energy in
the dissipation range resides in highly oblique Fourier
modes. The latter procedure is entirely of a geo-
metric nature and is completely unbiased with re-
gard to the dynamical nature of the excitations as-
sociated with the oblique wave vectors. (Note, how-
ever, that conversion from frequency to wave vector
using a single spacecraft requires use of the \frozen-
in assumption," which requires that the character-
istic speed of the 
uctuations, e.g., wavelength over
dynamical timescale, be much smaller than the so-
lar wind speed.) In any event, there remains the
challenge of �nding a dynamical model that might
adequately describe these highly transverse, nonslab

uctuations, thus forming a physical basis for under-
standing the couplings that connect 
uid and kinetic
scales in the dissipation range. Of the various possi-
bilities for such a dynamical model, two well-studied
examples are obliquely propagating waves and 2-D
MHD turbulence.

5.1. Obliquely Propagating Waves

Consider the possibility that obliquely propagating
waves form at least a portion of the inferred 2-D com-
ponent. As is well understood, there are three wave
modes for low-frequency, obliquely propagating elec-
tromagnetic waves: (1) the fast magnetosonic wave,
(2) the shear Alfv�en wave, and (3) the slow-mode
wave.

Both the fast magnetosonic wave and the slow-
mode wave are heavily damped in a high-� plasma,
regardless of wavelength [Barnes, 1979]. However, ob-
servations reported here and elsewhere indicate the
presence of a spectral breakpoint at scales near those
of ion gyromotion, which we associate here with the
dissipation processes. In this interpretation it is
highly unlikely that the fast- and slow-mode waves
can provide an adequate explanation of the observed
data. The shear Alfv�en wave has a dispersion re-
lation ! = kkvA for small values of k and is not
damped in this regime. However, when the wavenum-
ber k increases such that k?�p � 1, where �p is
the proton Larmor radius, the shear Alfv�en wave be-
comes the kinetic Alfv�en wave [Hasegawa and Sato,
1989; Stix, 1992], and it develops a substantial par-
allel electric �eld component. In this regime the ki-
netic Alfv�en wave is highly dispersive, and the real
part of the wave frequency asymptotically approaches
the ion cyclotron frequency. Electron Landau damp-
ing becomes important because of the presence of the
parallel electric �eld component, and ion cyclotron
damping can also play a signi�cant role in the damp-
ing process if !r � 
p.

It is clear that if some of the 
uctuations are ki-
netic Alfv�en waves, dissipation should occur when
k?�p � 1 or kvA=
p � 1. The dissipation scale length
associated with kinetic Alfv�en waves is quite consis-
tent with the observed dissipation range; thus it is
possible that part of the observed 
uctuation spec-
trum can be attributed to kinetic Alfv�en waves and
the damping of these waves can give rise to the dissi-
pation range.

The advantages of an explanation based upon ki-
netic Alfv�en waves are that (1) they possess wave
vectors at large angles to the mean magnetic �eld,
which is in general agreement with the conclusions
of sections 2{4, (2) they provide both cyclotron res-
onant dissipation and dissipation via the generation
of parallel electric �elds at comparable wavenumbers,
and (3) the two distinct mechanisms provide separate,
coincident mechanisms for heating both background
ions and electrons. The theory of kinetic Alfv�en wave
damping is not alone in this regard, but the theory is
signi�cantly more advanced than the related option
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that follows.

5.2. Two-Dimensional MHD Turbulence

An alternative dynamical model for dissipation
range 
uctuations is that they consist of two com-
ponents: (1) slab waves with wave vectors along (or
nearly along) the mean �eld and (2) 2-D MHD tur-
bulence, having wave vectors nearly perpendicular to
the mean �eld. Unlike the kinetic wave description,
this dynamicalmodel does not lend itself to a compact
representation based upon eigenmodes and dispersion
relations. However, the dynamics of 2-D turbulence
has been widely studied using statistical theories and
simulations [e.g., Kraichnan and Montgomery, 1980;
Matthaeus and Montgomery, 1980; Matthaeus and

Lamkin, 1986]. The slab/2-D composite model also
emerges as a natural description of anisotropic plasma
turbulence in the reduced MHD regime [Montgomery,
1982] and can be seen to emerge as a consequence of
a formal treatment of nearly incompressible MHD at
low and order-one �p [Zank and Matthaeus, 1993].
The two component model also has found use in vari-
ous solar wind applications (see review by Matthaeus

et al. [1995]), including transport of turbulence [Tu
and Marsch, 1993] and cosmic ray scattering [Bieber
et al., 1994].

As far as we are aware, most previous studies
that employ a two component turbulence represen-
tation (or, its close relatives, quasi-2-D or reduced
MHD models) have not attempted to characterize
magneto
uid or kinetic plasma dynamics in the dis-
sipation range in any detail. However, it is clear that
such a model presents interesting possibilities for in-

uencing the dissipation range. For example, in a re-
duced MHD or two-component model [Montgomery,
1982; Zank and Matthaeus, 1992b; R. Kinney and J.C.
McWilliams, Turbulent cascades in anisotropic mag-
netohydrodynamics, submitted to Phys. Rev. E, 1997]
the 2-D 
uctuations are expected to engage most vig-
orously in the cascade phenomena that transfer exci-
tations through the inertial range and into the smaller
dissipation scales. Thus established MHD e�ects are
capable of supplying the dissipation range with a

ux of energy from the substantial reservoirs typically
found at the large scales. This dissipation, in models
with simpli�ed transport coe�cients [e.g., Matthaeus

and Lamkin, 1986], is expected to occur near X-type
neutral points in the poloidal �eld through processes
related to magnetic reconnection.

A second relevant feature of models with a sig-
ni�cant admixture of 2-D turbulence relates directly
to the potential for dynamical couplings with ki-
netic processes. In particular, it has been estab-

lished through studies of test particle orbits in dy-
namical MHD �elds [Ambrosiano et al., 1988; Gray
and Matthaeus, 1992] that 2-D turbulence can ac-
count for substantial amounts of charged particle ac-
celeration. Typically, a broad spectrum of energetic
particles is formed, and for turbulence with energy-
containing scale L, test particle energies can range
up to values of 
pL=vA times their initial low values
(e.g., initial particle speed vA). The process by which
this occurs is complex [Ambrosiano et al., 1988] and
appears to involve temporary trapping of test parti-
cles in or near small scale 
uctuations that form near
reconnection zones near magnetic X points. A full
analytical theory of this acceleration process has not
yet been developed, but it seems plausible that MHD
structures with transverse scales of the order of the
thermal particle gyroradius might be involved. The
matching conditions associated with e�cient acceler-
ation of this type are most likely temporal resonance
conditions but in any case cannot involve the usual
spatial resonance condition (equation (5)), since such
couplings are absent for 2-D MHD 
uctuations hav-
ing kk = 0. The scenario in which MHD energy 
ows
into particle energy can only be suggested by test par-
ticle studies. A full kinetic treatment is required to
demonstrate the feasibility of the above process as a
means of coupling MHD scales to kinetic scales and
thereby forming a dissipation range. However, the ex-
isting test particle studies provide ample motivation
to further examine this possibility.

The dynamical perspectives associated with the 2-
D turbulence and kinetic Alfv�en waves are quite dif-
ferent, but the two paradigms are not inconsistent
either. Kinetic Alfv�en wave theory takes into account
couplings to the kinetic degrees of freedom of the
plasma and ignores \wave-wave" couplings among the
waves. The 2-D turbulence perspective takes full ac-
count of the couplings between the various MHD scale
Fourier modes (analogous to wave-wave couplings)
but discards the kinetic couplings. In this light, the
two models are not contradictory but, rather, are
complementary. In fact, from a geometrical or kine-
matic point of view the two models are nearly in-
distinguishable, and the nonslab, transverse magnetic

uctuations identi�ed in section 4 might equally well
display the dynamical features of either model.

An additional feature that is common in the two
models and that is of particular interest from the
point of view of dissipation mechanisms is the paral-
lel electric �eld. For kinetic Alfv�en waves the parallel
electric �eld is an integral feature of the eigenmodes
at cyclotron scales. For 2-D turbulence a parallel in-
duced electric �eld is associated with �V��B (where
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�V and �B are the plasma velocity and magnetic �eld

uctuations, respectively). In both cases the parallel
electric �eld would be expected to couple to kinetic
processes, for example, in the manner described by
Wong et al. [1997], presumably leading to heating of
the plasma and dissipation of MHD scale energy in
both cases.

6. Summary

We have undertaken to study and parameterize the
dissipation range of IMF 
uctuations and its causes.
We have repeated the analyses of two inertial range
studies [Belcher and Davis, 1971; Bieber et al., 1996]
and extended their results to include the dissipation
range using the increased capabilities of the Wind
spacecraft.

The results of our investigation of magnetic 
uctu-
ations agree for the most part with those of Belcher
and Davis [1971]: the total variances transverse to
and aligned with the mean �eld are in a ratio 10.4:1
for the high-frequency end of the inertial range. In
the same coordinate system (B̂� R̂; B̂� (B̂� R̂); B̂)
used by Belcher and Davis the ratio of geometric mean
variances is 6.7:3.7:1. In the dissipation range, trans-
verse 
uctuations are less dominant, and the ratio of
total transverse to parallel powers falls to 4.9:1, while
the component-to-component ratio becomes 3.3:1.6:1.

We also agree with the Belcher and Davis [1971]
observation that temperature is correlated with spec-
tral index. Hotter intervals tend to have shallower
inertial ranges and steeper dissipation ranges. This
suggests that hotter intervals tend to have greater
heating rates due to the more rapid dissipation of
magnetic energy.

The onset of the dissipation range, the spectral
break frequency �bf , occurs at frequencies roughly
comparable to the proton cyclotron frequency �pc.
Together with a bias in the magnetic helicity spec-
trum that implies a depletion of outward propagating
Alfv�en waves, which is observed in all but six of the
33 events used in this study, one would expect res-
onant cyclotron damping to explain the dissipation
range. However, we �nd that Doppler-shifted reso-
nant damping cannot explain the observations, and
the percentage errors tend to 100% as the �eld-to-

ow angle �BVSW becomes 90�. In fact, any imposed
�BVSW dependence leads to a systematic error in the
results. This di�culty can be avoided by considering
more general geometries of magnetic 
uctuations.

Repeating the analyses of Bieber et al. [1996], we
�nd that 
uctuations in the high-frequency end of the
inertial range are best described by a mixture of 11%

slab waves and 89% 2-D geometry with the greatest
percentage of wave vectors at large angles to the mean
magnetic �eld. In the dissipation range the 
uctua-
tions are best described by a mixture of 46% slab
waves and 54% 2-D geometry. The increased slab
fraction may be explained by the preferential dissipa-
tion of oblique structures. Whatever the mechanism
of dissipation, it must leave a polarized magnetic he-
licity spectrum in the remaining slab fraction exactly
as observed.

Our test of the dissipation range geometry does
not indicate the nature or dynamics of the 2-D com-
ponent. Although we have discussed it largely within
the context of past turbulence discussions, it is possi-
ble that kinetic Alfv�en waves may form some fraction
of this turbulence. As such, the dissipation of kinetic
Alfv�en waves either by ion cyclotron damping or elec-
tron Landau damping may be signi�cant to the for-
mation of the dissipation range. Likewise, turbulent
trapping of particles by closed-�eld structures and ac-
celeration by parallel electric �elds generated by the
MHD turbulence may be signi�cant.

It is also true that our geometry analysis requires
the assumption that the fully 3-D spectrum be formed
from slab and 2-D components. A general axisym-
metric spectrum is not permitted. It is di�cult to
conclude how this analysis would respond to the sit-
uation of slab plus moderately oblique waves as sug-
gested by Sari and Valley [1976]. The existence of
nonzero spectral power for the component along the
mean magnetic �eld continues to support the latter
view, and it seems likely that the fully 3-D spectrum
is a combination of slab, 2-D, and oblique wave vec-
tors. This analysis suggests that the 2-D component
dominates.

This paper began by discussing two paradigms for
the IMF 
uctuations and their implications for solar
wind heating. While this work has not entirely ruled
out the simpler paradigm of noninteracting waves, it
has severely limited its applicability. It is now neces-
sary that a signi�cant fraction of the magnetic wave
energy reside in highly oblique waves and that the on-
set of dissipation not be governed by the dynamics of
ion cyclotron damping of parallel-propagating waves.

Acknowledgments. This work is supported by the
Wind mission through NASA subcontract NAG5-2848
to the Bartol Research Institute. The participation of
W.H.M. is supported by NASA grant NAG5-3026. The
participation of H.K.W. is supported by NASA contract
NAS5-32484 and by a grant to the Goddard Space Flight
Center from the NASA Space Physics Theory Program.
The authors wish to thank the PI of the Wind Mag-



14

netic Field Experiment, R.P. Lepping, for making the data
available for this study and W.M. Farrell and J.B. Byrnes
for assisting in those e�orts. C.W.S. wishes to acknowl-
edge a helpful conversation with J.V. Hollweg.

The Editor thanks F. M. Neubauer and another referee
for their assistance in evaluating this paper.

References

Ambrosiano, J., W. H. Matthaeus, M. L. Goldstein, and
D. Plante, Test particle acceleration in turbulent recon-
necting magnetic �elds, J. Geophys. Res., 93, 14,383{
14,400, 1988.

Barnes, A., Collisionless damping of hydromagnetic waves,
Phys. Fluids, 9, 1483{1495, 1966.

Barnes, A., Hydromagnetic waves and turbulence in the
solar wind, in Solar System Plasma Physics, Vol. 1,
edited by E. N. Parker, C. F. Kennel, and L. J. Lanze-
rotti, pp. 249{319, North-Holland, New York, 1979.

Batchelor, G. K., The Theory of Homogeneous Turbu-

lence, Cambridge Univ. Press, New York, 1953.
Behannon, K. W., Observations of the interplanetary

magnetic �eld between 0.46 and 1 AU by the Mariner
10 spacecraft, Ph.D. thesis, Catholic Univ. of Am.,
Washington, D.C., 1975.

Belcher, J. W., and L. Davis Jr., Large-amplitude Alfv�en
waves in the interplanetary medium, 2, J. Geophys.

Res., 76, 3533{3563, 1971.
Bevington, P. R., Data Reduction and Error Analysis for

the Physical Sciences, McGraw-Hill, New York, 1969.
Bieber, J. W., J. Chen, W. H. Matthaeus, C. W. Smith,

and M. A. Pomerantz, Long-term variations of inter-
planetary magnetic �eld spectra with implications for
cosmic ray modulation, J. Geophys. Res., 98, 3585{
3603, 1993.

Bieber, J. W., W. H. Matthaeus, C. W. Smith, W. Wan-
ner, M.-B. Kallenrode, and G. Wibberenz, Proton and
electron mean free paths: The Palmer consensus revis-
ited, Astrophys. J., 420, 294{306, 1994.

Bieber, J. W., W. Wanner, and W. H. Matthaeus, Dom-
inant two-dimensional solar wind turbulence with im-
plications for cosmic ray transport, J. Geophys. Res.,
101, 2511{2522, 1996.

Blackman, R. B., and J. W. Tukey, The Measurement of

Power Spectra, Dover, Mineola, N.Y., 1958.
Chen, J., Long-term modulation of cosmic rays in inter-

planetary magnetic turbulence, Ph.D. thesis, Univ. of
Del., Newark, 1989.

Chen, J., J. W. Bieber, and M. A. Pomerantz, Cosmic ray
unidirectional latitude gradient: Evidence for north-
south asymmetric solar modulation, J. Geophys. Res.,
96, 11,569{11,585, 1991.

Coleman, P. J., Jr., Hydromagnetic waves in the inter-
planetary plasma, Phys. Rev. Lett., 17, 207{211, 1966.

Coleman, P. J., Jr., Turbulence, viscosity, and dissipation
in the solar wind plasma, Astrophys. J., 153, 371{388,

1968.
Daily, W. D., Alfv�en wave refraction by interplanetary in-

homogeneities, J. Geophys. Res., 78, 2043{2053, 1973.
Denskat, K. U., H. J. Beinroth, and F. M. Neubauer,

Interplanetary magnetic �eld power spectra with fre-
quencies from 2:4 � 10�5 Hz to 470 Hz from Helios-
observations during solar minimum conditions, J. Geo-
phys., 54, 60{67, 1983.

Freeman, J. W., Estimates of solar wind heating inside
0.3 AU, Geophys. Res. Lett., 15, 88{91, 1988.

Goldstein, M. L., D. A. Roberts, and C. A. Fitch, Proper-
ties of the 
uctuating magnetic helicity in the inertial
and dissipation ranges of solar wind turbulence, J. Geo-
phys. Res., 99, 11,519{11,538, 1994.

Goldstein, M. L., D. A. Roberts, and W. H. Matthaeus,
Magnetohydrodynamic turbulence in the solar wind,
Annu. Rev. Astron. Astrophys., 33, 283{325, 1995.

Gray, P. C., and W. H. Matthaeus, MHD turbulence, re-
connection and test-particle acceleration, in Particle

Acceleration in Cosmic Plasmas, edited by G. P. Zank
and T. K. Gaisser, pp. 261{266, (Am. Inst. of Phys.,
College Park, Md.), 1992.

Hasegawa, A., and T. Sato, Space Plasma Physics, Vol. 1,
Stationary Processes, Springer-Verlag, New York, 1989.

Hollweg, J. V., On WKB expansions for Alfv�en waves in
the solar wind, J. Geophys. Res., 95, 14,873{14,879,
1990.

Klein, L. W., D. A. Roberts, and M. L. Goldstein,
Anisotropy and minimum variance directions of solar
wind 
uctuations in the outer heliosphere, J. Geophys.
Res., 96, 3779{3788, 1991.

Kolmogoro�, A. N., The local structure of turbulence in
incompressible viscous 
uid for very large Reynolds
numbers, Dokl. Akad. Nauk SSSR, 30, 301{305, 1941.

Kraichnan, R. H., and D. C. Montgomery, Two dimen-
sional turbulence, Rep. Prog. Phys., 43, 547{619, 1980.

Lepping, R. P., et al., The Wind magnetic �eld investiga-
tion, Space Sci. Rev., 71, 207{229, 1995.

Marsch, E., Kinetic physics of the solar wind plasma,
in Physics of the Inner Heliosphere, Vol. 2, Parti-

cles, Waves and Turbulence, edited by R. Schwenn and
E. Marsch, pp. 45{133, Springer-Verlag, New York,
1991.

Matthaeus, W. H., and M. L. Goldstein, Measurement of
the rugged invariants of magnetohydrodynamic turbu-
lence in the solar wind, J. Geophys. Res., 87, 6011{
6028, 1982.

Matthaeus, W. H., and S. L. Lamkin, Turbulent magnetic
reconnection, Phys. Fluids, 29, 2513{2534, 1986.

Matthaeus, W. H., and D. C. Montgomery, Selective decay
hypothesis at high mechanical and magnetic Reynolds
numbers, in Nonlinear Dynamics, edited by R. H. G.
Helleman, Ann. N. Y. Acad. Sci., 357, 203{222, 1980.

Matthaeus, W. H., M. L. Goldstein, and D. A. Roberts,
Evidence for the presence of quasi-two-dimensional
nearly incompressible 
uctuations in the solar wind,



15

J. Geophys. Res., 95, 20,673{20,683, 1990.
Matthaeus, W. H., J. W. Bieber, and G. P. Zank, Un-

quiet on any front: Anisotropic turbulence in the solar
wind, Rev. Geophys., U.S. Natl. Rep. Int. Union Geod.
Geophys. 1991{1994, 33, 609{614, 1995.

Mo�att, H. K., Magnetic Field Generation in Electrically

Conducting Fluids, Cambridge Univ. Press, New York,
1978.

Montgomery, D. C., Major disruption, inverse cascades,
and the Strauss equations, Phys. Scr., T, 2(1), 83{88,
1982.

Ogilvie, K. W., et al., SWE, A comprehensive plasma in-
strument for the Wind spacecraft, Space Sci. Rev., 71,
55{77, 1995.

Oughton, S., Transport of solar wind 
uctuations: A tur-
bulence approach, Ph.D. thesis, Univ. of Del., Newark,
1993.

Richardson, J. D., K. I. Paularena, A. J. Lazarus, and
J. W. Belcher, Radial evolution of the solar wind from
IMP 8 to Voyager 2, Geophys. Res. Lett., 22, 325{328,
1995.

Sari, J. W., and G. C. Valley, Interplanetary magnetic
�eld power spectra: Mean �eld radial or perpendicular
to radial, J. Geophys. Res., 81, 5489{5499, 1976.

Schwartz, S. J., W. C. Feldman, and S. P. Gary, The
source of proton anisotropy in the high-speed solar
wind, J. Geophys. Res., 86, 541{546, 1981.

Smith, C. W., M. L. Goldstein and W. H. Matthaeus,
Turbulence analysis of the Jovian upstream \wave"
phenomenon, J. Geophys. Res., 88, 5581{5593, 1983.
(Correction, J. Geophys. Res., 89, 9159{9160, 1984.)

Smith, C. W., W. H. Matthaeus, and N. F. Ness, Mea-
surement of the dissipation range spectrum of magnetic

uctuations in the solar wind with applications to the
di�usion of cosmic rays, Proc. Int. Conf. Cosmic Rays
21st, (5), 280{283, 1990.

Stix, T. H.,Waves in Plasmas, Am. Inst. of Phys., College
Park, Md., 1992.

Tu, C.-Y., and E. Marsch, A model of solar wind 
uctua-
tions with two components: Alfv�en waves and convec-
tive structures, J. Geophys. Res., 98, 1257{1276, 1993.

Tu, C.-Y., and E. Marsch, MHD Structures, Waves and

Turbulence in the Solar Wind, Kluwer Acad., Norwell,
Mass., 1995. (Reprinted from Space Sci. Rev., 73(1{2),
1995.)

Williams, L. L., and G. P. Zank, E�ect of magnetic �eld
geometry on the wave signature of the pickup of inter-
stellar neutrals, J. Geophys. Res., 99, 19,229{19,244,
1994.

Wong, H. K., A. F. Vi~nas, and A. J. Klimas, Generation of
high and low frequency waves by long-wavelength elec-
tric �eld 
uctuations, Eos, Trans. AGU, 78(17), Spring
Meet. Suppl., S251, 1997.

Zank, G. P., and W. H. Matthaeus, Waves and turbulence
in the solar wind, J. Geophys. Res., 97, 17,189{17,194,
1992a.

Zank, G. P., and W. H. Matthaeus, The equations of re-
duced magnetohydrodynamics, J. Plasma Phys., 48,
85{100, 1992b.

Zank, G. P., and W. H. Matthaeus, Nearly incompress-
ible 
uids, II, Magnetohydrodynamics, turbulence and
waves, Phys. Fluids A, 5, 257{273, 1993.

Zank, G. P., W. H. Matthaeus, and C. W. Smith, Evolu-
tion of turbulent magnetic 
uctuation power with helio-
spheric distance, J. Geophys. Res., 101, 17,093{17,107,
1996.

R.J. Leamon, W.H. Matthaeus, N.F. Ness, and
C.W. Smith, Bartol Research Institute, University of
Delaware, Newark, DE 19716. (e-mail:
leamon@bartol.udel.edu; yswhm@bartol.udel.edu;
nfness@bartol.udel.edu; chuck@bartol.udel.edu)
H.K. Wong, Aurora Science Inc., 4502 Center-

view Drive, San Antonio, TX 87228.
(e-mail: kit@cascade.gsfc.nasa.gov)

August 18, 1997; revised October 24, 1997; accepted
November 18, 1997.

This preprint was prepared with AGU's LATEX macros v4.
File DISSIPATION formatted January 21, 1998.

With the extension package `AGU++', version 1.2 from
1995/01/12


